Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in , , and and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116610PMC
http://dx.doi.org/10.1126/sciadv.abn2265DOI Listing

Publication Analysis

Top Keywords

discovery pipeline
8
basement membrane
4
membrane discovery
4
pipeline uncovers
4
network
4
uncovers network
4
network complexity
4
complexity regulators
4
human
4
regulators human
4

Similar Publications

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF

APD6: the antimicrobial peptide database is expanded to promote research and development by deploying an unprecedented information pipeline.

Nucleic Acids Res

September 2025

Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States.

The global antibiotic resistance issue constitutes a driving force for developing host defense antimicrobial peptides (AMPs) into a new generation of antibiotics. To facilitate this development, we report the antimicrobial peptide database version 6 (APD6) with (i) the consolidated database platform, (ii) the most comprehensive AMP information pipeline (AMPIP), and (iii) the expanded wheel of function. As of 18 March 2025, the APD6 platform housed records for 5188 peptides, including 3306 natural, 1380 synthetic, and 239 predicted AMPs with systematic classification schemes for each group.

View Article and Find Full Text PDF

OmnibusX: A unified platform for accessible multi-omics analysis.

PLoS Comput Biol

September 2025

OmnibusXLab, OmnibusX Company Limited, Ho Chi Minh City, Vietnam.

OmnibusX is an integrated, privacy-centric platform that enables code-free multi-omics data analysis by bridging computational methodologies with user-friendly interfaces. Designed to overcome challenges posed by fragmented analytical tools and high computational barriers, OmnibusX consolidates workflows for diverse technologies - including bulk RNA-seq, single-cell RNA-seq, single-cell ATAC-seq, and spatial transcriptomics - into a single, cohesive application. The application integrates established open-source tools such as Scanpy, DESeq2, SciPy, and scikit-learn into transparent, reproducible pipelines, offering users control over analytical parameters.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) affects millions of individuals worldwide and has no known curative treatment, making it a serious global health concern. The management of its development depends on early discovery, and X-ray imaging is a fundamental diagnostic technique. However, due to variations in radiologists' levels of experience, manual X-ray interpretation increases variability and possible inaccuracies.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF