Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies have highlighted the importance of ecological interactions in dysbiosis of gut microbiota, but few focused on their role in antibiotic-induced perturbations. We used the data from the CEREMI trial in which 22 healthy volunteers received a 3-day course of ceftriaxone or cefotaxime antibiotics. Fecal samples were analyzed by 16S rRNA gene profiling, and the total bacterial counts were determined in each sample by flux cytometry. As the gut exposure to antibiotics could not be experimentally measured despite a marked impact on the gut microbiota, it was reconstructed using the counts of susceptible Escherichia coli. The dynamics of absolute counts of bacterial families were analyzed using a generalized Lotka-Volterra equations and nonlinear mixed effect modeling. Bacterial interactions were studied using a stepwise approach. Two negative and three positive interactions were identified. Introducing bacterial interactions in the modeling approach better fitted the data, and provided different estimates of antibiotic effects on each bacterial family than a simple model without interaction. The time to return to 95% of the baseline counts was significantly longer in ceftriaxone-treated individuals than in cefotaxime-treated subjects for two bacterial families: Akkermansiaceae (median [range]: 11.3 days [0; 180.0] vs. 4.2 days [0; 25.6], p = 0.027) and Tannerellaceae (13.7 days [6.1; 180.0] vs. 6.2 days [5.4; 17.3], p = 0.003). Taking bacterial interaction as well as individual antibiotic exposure profile into account improves the analysis of antibiotic-induced dysbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286716PMC
http://dx.doi.org/10.1002/psp4.12806DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
modeling bacterial
8
bacterial families
8
bacterial interactions
8
bacterial
7
bacterial dynamics
4
gut
4
dynamics gut
4
microbiota antibiotic-induced
4
antibiotic-induced perturbation
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF