Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Esca is a widespread grapevine trunk disease, and a global increase in esca incidence has been observed in recent decades. Estimates attribute considerable economic losses to esca, and the disease is considered one of the major causes of vine mortality and vineyard dieback. However, accurate quantification of esca incidence is difficult due to symptom inconsistency, and there are very few studies precisely quantifying yield losses and impacts on fruit composition and wine quality. This study carried out an extensive esca surveying program; annually monitoring approximately 57,000 vines across 12 estates in the Bordeaux region for 9 years. In conjunction with this surveying program, we quantified the yield losses of vines with known esca symptom histories and assessed their fruit composition and resulting wine quality. The study revealed that, because of year-to-year variation in symptom expression, accurate rates of esca can only be obtained through monitoring over many years. We found that yield losses in individual vines exhibiting esca can reach up to 50% but they are rarely unproductive, and when scaled to the parcel scale yield losses are low, never exceeding 1 hl/ha. In addition, the quality of the grapes produced is similar to that obtained from vines without symptoms. Finally, the majority of mortality observed in vineyards was not due to esca, with only 40% of dead vines exhibiting an esca history. These results suggest that the impact of esca is likely overestimated and that it is necessary to more broadly investigate other factors contributing to vine mortality and vineyard dieback.[Formula: see text] Copyright © 2022 The Author(s). This is an open-access article distributed under the CC BY 4.0 International license.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-21-2454-REDOI Listing

Publication Analysis

Top Keywords

yield losses
16
wine quality
12
esca
11
esca monitoring
8
impacts fruit
8
esca incidence
8
vine mortality
8
mortality vineyard
8
fruit composition
8
composition wine
8

Similar Publications

Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.

View Article and Find Full Text PDF

Comparison of the toxicity and pharmacological effects of two insecticides against the Asian corn borer, Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China. Electronic address:

The Asian Corn Borer (ACB), Ostrinia furnacalis (Guenée) is a devastating pest of maize, causing significant yield and economic losses in Asia. GABA receptor inhibitors have served as effective tools for controlling ACB larvae over the past several decades. However, the toxicity levels and pharmacological properties of two insecticides, fluxametamide and fipronil against the ACB are still unclear.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Genistein: A promising botanical fungicide candidate for enhancing tomato yield and quality by controlling Alternaria solani.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The overreliance on traditional chemical fungicides, combined with the emergence of resistance, poses significant challenges for food safety. Early blight, caused by the fungal pathogen Alternaria solani (A. solani), is among the most significant contributors to pre- and postharvest yield losses in tomato cultivation.

View Article and Find Full Text PDF