Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is well established that different light wavelengths affect broiler behavior. The present study aims to evaluate the effect of four light wavelengths on broiler behavior from 1 to 42 days of age. Birds were housed at a stocking density of 13 birds/m, in 32 boxes of 1.56 m. The experimental design was a completely randomized factorial of 4 × 2 (four colors × two sexes), with four replicates. Behavioral variables were accessed through cameras and observed in person thrice a week for 30 min per day in three different periods. Data were organized according to age groups and analyzed by a data mining approach with the different light wavelengths as the classes. Natural behavior defined by stretch, dust bath of male broilers reared in environments with green and blue light was more relevant to the classification of male broilers' behavior (96.9 and 96.9% accuracy and 0.8 and 1.0 of class precision of behavior classification, respectively). Blue and green lights affected the behavior of male broilers starting at 7 days of age, increasing the presence at the bird feeder, and reducing the idle period.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-022-03188-6DOI Listing

Publication Analysis

Top Keywords

light wavelengths
16
broiler behavior
12
male broilers
8
behavior
6
light
5
behavior differs
4
differs males
4
males females
4
females light
4
wavelengths
4

Similar Publications

MoSe nanosheet/Si heterojunction photodetectors were fabricated by a mechanical exfoliation method, and their electrical and optical properties at different temperatures were investigated. It was found that the MoSe nanosheet/Si heterojunction device exhibited excellent rectification characteristics at room temperature, and the rectification ratio gradually decreased with the decrease of temperature. The temperature-dependent electrical properties of the MoSe/Si heterojunction device were actually caused by the inhomogeneity of the potential barrier.

View Article and Find Full Text PDF

The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF