98%
921
2 minutes
20
The human genome contains repetitive regions, such as segmental duplications, known to be prone to copy number variation. Segmental duplications are highly identical and homologous sequences, posing a specific challenge for most mutation detection methods. The giant nebulin gene is expressed in skeletal muscle. It harbors a large segmental duplication region composed of eight exons repeated three times, the so-called triplicate region. Mutations in nebulin are known to cause nemaline myopathy and other congenital myopathies. Using our custom targeted Comparative Genomic Hybridization arrays, we have previously shown that copy number variations in the nebulin triplicate region are pathogenic when the copy number of the segmental duplication block deviates two or more copies from the normal number, which is three per allele. To complement our Comparative Genomic Hybridization arrays, we have established a custom Droplet Digital PCR method for the detection of copy number variations within the nebulin triplicate region. The custom Droplet Digital PCR assays allow sensitive, rapid, high-throughput, and cost-effective detection of copy number variations within this region and is ready for implementation a screening method for disease-causing copy number variations of the nebulin triplicate region. We suggest that Droplet Digital PCR may also be used in the study and diagnostics of other segmental duplication regions of the genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109913 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267793 | PLOS |
Stem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDFNat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFBr J Cancer
September 2025
Department of Genetics, Institut Curie, PSL Research University, Paris, France.
Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.
Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.
Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.
Fish Shellfish Immunol
September 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China. Electronic address:
One of the key innate immune pathways in invertebrates is the immune deficiency (IMD) signaling pathway, which effectively combats Gram-negative bacterial infections. In insects, the IMD pathway is involved in the defense against certain viral infections. However, the functional role of the IMD pathway in antiviral immunity remains incompletely characterized in crustaceans.
View Article and Find Full Text PDF