Modulation of Cholesterol Pathways in Human Macrophages Infected by Clinical Isolates of .

Front Cell Infect Microbiol

Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To increase our understanding of factors contributing to therapeutic failure (TF) in leishmaniasis, we have studied some plasma membrane features of host THP-1 cells infected with clinical isolates of from patients with leishmaniasis and TF. The fluorescent probes DPH and TMA-DPH were used to measure changes in membrane fluidity at various depths of the plasma membranes. Steady-state fluorescence anisotropy of DPH embedded in the infected THP-1 membranes showed a significant increase, thereby suggesting a substantial decrease in plasma membrane fluidity relative to controls. Considering that cholesterol affects membrane fluidity and permeability, we determined the cholesterol content in plasma membrane fractions of human macrophages infected with these lines and observed a significant increase in cholesterol content that correlates with the measured decrease in plasma membrane fluidity. In order to define the pathways that could explain the increase in cholesterol content, we studied the transcriptomics of the cholesterol-enriched pathways in host THP-1 cells infected with TF clinical isolates by RNA-seq. Specifically, we focused on four enriched Gene Ontology (GO) terms namely cholesterol efflux, cholesterol transport, cholesterol metabolic process and cholesterol storage. Additionally, we analyzed the genes involved in these pathways. Overall, this study shows that these clinical isolates are able to modulate the expression of specific genes in host cells, thereby modifying the cholesterol content in plasma membranes and inducing changes in plasma membrane fluidity that could be associated with the parasite's ability to survive in the host macrophages, thereby possibly contributing to immune evasion and TF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106381PMC
http://dx.doi.org/10.3389/fcimb.2022.878711DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
membrane fluidity
20
clinical isolates
16
cholesterol content
16
infected clinical
12
cholesterol
9
human macrophages
8
macrophages infected
8
host thp-1
8
thp-1 cells
8

Similar Publications

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF

Controlling Chloride Crossover in Bipolar Membrane Water Electrolysis.

ACS Electrochem

September 2025

Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.

View Article and Find Full Text PDF

Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.

View Article and Find Full Text PDF