98%
921
2 minutes
20
The two members of the cytoplasmic FMR1-interacting protein family, CYFIP1 and CYFIP2, are evolutionarily conserved multifunctional proteins whose defects are associated with distinct types of brain disorders. Even with high sequence homology between CYFIP1 and CYFIP2, several lines of evidence indicate their different functions in the brain; however, the underlying mechanisms remain largely unknown. Here, we performed reciprocal immunoprecipitation experiments using CYFIP1-2 × Myc and CYFIP2-3 × Flag knock-in mice and found that CYFIP1 and CYFIP2 are not significantly co-immunoprecipitated with each other in the knock-in brains compared with negative control wild-type (WT) brains. Moreover, CYFIP1 and CYFIP2 showed different size distributions by size-exclusion chromatography of WT mouse brains. Specifically, mass spectrometry-based analysis of CYFIP1-2 × Myc knock-in brains identified 131 proteins in the CYFIP1 interactome. Comparison of the CYFIP1 interactome with the previously identified brain region- and age-matched CYFIP2 interactome, consisting of 140 proteins, revealed only eight common proteins. Investigations using single-cell RNA-sequencing databases suggested non-neuronal cell- and neuron-enriched expression of Cyfip1 and Cyfip2, respectively. At the protein level, CYFIP1 was detected in both neurons and astrocytes, while CYFIP2 was detected only in neurons, suggesting the predominant expression of CYFIP1 in astrocytes. Bioinformatic characterization of the CYFIP1 interactome, and co-expression analysis of Cyfip1 with astrocytic genes, commonly linked CYFIP1 with focal adhesion proteins. Immunocytochemical analysis and proximity ligation assay suggested partial co-localization of CYFIP1 and focal adhesion proteins in cultured astrocytes. Together, these results suggest a CYFIP1-specific association with astrocytic focal adhesion, which may contribute to the different brain functions and dysfunctions of CYFIP1 and CYFIP2. Cover Image for this issue: https://doi.org/10.1111/jnc.15410.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.15622 | DOI Listing |
BMC Musculoskelet Disord
April 2025
Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China.
Background: Osteoarthritis (OA) is a joint disease closely associated with synovial tissue inflammation, with the severity of synovitis impacting disease progression. m7G RNA methylation is critical in RNA processing, metabolism, and function, but its role in OA synovial tissue is not well understood. This study explores the relationship between m7G methylation and immune infiltration in OA.
View Article and Find Full Text PDFBrain Res Bull
January 2024
Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom. Electronic address:
J Neurochem
July 2022
Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.
Mol Biol Rep
August 2021
Carlos Chagas Institute-FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775, CIC, Curitiba, Paraná, 81830-010, Brazil.
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of development.
View Article and Find Full Text PDFFront Mol Neurosci
October 2020
Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.
The cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 () gene is associated with epilepsy, intellectual disability (ID), and developmental delay, suggesting its critical role in proper neuronal development and function. CYFIP2 is involved in regulating cellular actin dynamics and also interacts with RNA-binding proteins. However, the adult brain function of CYFIP2 remains unclear because investigations thus far are limited to heterozygous ( ) mice owing to the perinatal lethality of -null mice.
View Article and Find Full Text PDF