98%
921
2 minutes
20
Many medical applications have arisen from the technological advancement of three-dimensional (3D) bioprinting, including the printing of cancer models for better therapeutic practice whilst imitating the human system more accurately than animal and conventional in vitro systems. The objective of this systematic review is to comprehensively summarise information from existing studies on the effectiveness of bioinks in mimicking the tumour microenvironment of glioblastoma and their clinical value. Based on predetermined eligibility criteria, relevant studies were identified from PubMed, Medline Ovid, Web of Science, Scopus, and ScienceDirect databases. Nineteen articles fulfilled the inclusion criteria and were included in this study. Alginate hydrogels were the most widely used bioinks in bioprinting. The majority of research found that alginate bioinks had excellent biocompatibility and maintained high cell viability. Advanced structural design, as well as the use of multicomponent bioinks, recapitulated the native in vivo morphology more closely and resulted in bioprinted glioblastoma models with higher drug resistance. In addition, 3D cell cultures were superior to monolayer or two-dimensional (2D) cell cultures for the simulation of an optimal tumour microenvironment. To more precisely mimic the heterogenous niche of tumours, future research should focus on bioprinting multicellular and multicomponent tumour models that are suitable for drug screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103189 | PMC |
http://dx.doi.org/10.3390/cancers14092149 | DOI Listing |
Front Bioeng Biotechnol
August 2025
The Third Department of Orthopedic Surgery, Fuxin Mining General Hospital of Liaoning Health Industry Group, Liaoning, China.
Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.
View Article and Find Full Text PDFEur J Pharm Sci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey. Electronic address:
Inflammatory bowel disease (IBD) is a chronic, relapsing disease that poses significant challenges in treatment. This study aimed to develop silk fibroin-based mesalazine and chitosan:TNF-α siRNA polyplex-loaded, 3D bioprinted hydrogels for the oral treatment of IBD. For this purpose, bioink formulations composed of silk fibroin, hyaluronic acid, and sodium alginate were optimized.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, United States.
The development of thick, permeable, three-dimensional (3D) constructs is essential for advancing tissue engineering applications that require efficient mass transport and prolonged cell viability. In this study, a printable gelatin composite-poly(vinyl alcohol) (PVA) bioink is designed and evaluated for the self-supported fabrication of 3D thick porous constructs with satisfactory permeability. The proposed bioink incorporates gelatin solution, gelatin microgels, and PVA, which is utilized as a sacrificial porogen to facilitate postprinting pore formation.
View Article and Find Full Text PDFMacromol Biosci
August 2025
Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
Pre-vascularization through endothelial cell seeding within 3D-bioprinted constructs holds great promise to advance tissue engineering vascularization strategies. Herein, the effect of biophysical (bulk modulus (0.50-76.
View Article and Find Full Text PDFInt J Extrem Manuf
February 2025
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.
Degenerative spine pathologies, including intervertebral disc (IVD) degeneration, present a significant healthcare challenge due to their association with chronic pain and disability. This study explores an innovative approach to IVD regeneration utilizing 3D bioprinting technology, specifically visible light-based digital light processing (VL-DLP), to fabricate tissue scaffolds that closely mimic the native architecture of the IVD. Utilizing a hybrid bioink composed of gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) at a 10% concentration, we achieved enhanced printing fidelity and mechanical properties suitable for load-bearing applications such as the IVD.
View Article and Find Full Text PDF