98%
921
2 minutes
20
Grouping of substances is a method used to streamline hazard and risk assessment. Assessment of similarity provides the scientific evidence needed for formation of groups. This work reports on justification of grouping of nanoforms (NFs) via similarity of their surface reactivity. Four reactivity assays were used for concentration dependent detection of reactive oxygen species (ROS) generated by NFs: abiotic assays FRAS, EPR and DCFH2-DA, as well as the in vitro assay of NRF2/ARE responsive luciferase reporter activation in the HEK293 cell line. Representative materials (CuO, MnO, BaSO, CeO and ZnO) and three case studies of each several NFs of iron oxides, Diketopyrrolopyrroles (DPP)-based organic pigments and silicas were assessed. A novel similarity assessment algorithm was applied to quantify similarities between pairs of NFs, in a four-step workflow on concentration-response curves, individual concentration and response ranges, and finally the representative materials. We found this algorithm to be applicable to all abiotic and in vitro assays that were tested. Justification of grouping must include the increased potency of smaller particles via the scaling of effects with specific surface, and hence quantitative similarity analysis was performed on concentration-response in mass-metrics. CuO and BaSO were the most and least reactive representative materials respectively, and all assays found BaSO/CuO not similar, as confirmed by their different NOAECs of in vivo studies. However, similarity outcomes from different reactivity assays were not always in agreement, highlighting the need to generate data by one assay for the representative materials and the candidate group of NFs. Despite low similarity scores in vitro some pairs of case study NFs can be accepted as sufficiently similar because the in vivo NOAECs are similar, highlighting the conservative assessment by the abiotic assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.impact.2022.100390 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Design and Merchandising, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
Development on sustainable and inexpensive polymer fibers with high mechanical and water resistance properties has garnered significant attention in infrastructure application. Herein, lignin nanoparticles (LNP) were used as a modifier, boron nitride nanosheets (BNNS)@hyperbranched polylysine (HBPL) obtained were regarded as the cooperative modifier, and then polyvinyl alcohol (PVA)/LNP/BNNS@HBPL composite fibers were fabricated successfully by wet and dry spinning. Vast free hydrophilic hydroxyl groups in PVA decreased due to hydrogen bonding interactions among LNP, BNNS@HBPL, and PVA, thereby attenuating intramolecular and intermolecular hydrogen bonding within PVA.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:
With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, China. Electronic address:
Ethnopharmacological Relevance: Acute kidney injury (AKI) is a growing worldwide health concern. Danggui Shaoyao San (DGSYS) was an frequently-used representative prescription to "promote blood and water and harmonize the body" in traditional Chinese medicine, and its underlying mechanism against AKI remains to be elucidated.
Aim Of The Study: To investigate the protective effect and potential molecular mechanism of DGSYS in alleviating AKI by network pharmacology and experiment validation.
World Neurosurg
September 2025
Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey; Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey. Electronic address:
Introduction: The infratemporal fossa (ITF) represents a complex anatomical region of critical relevance in skull base surgery, particularly due to its involvement in the extension of neoplastic lesions. Surgical access to this region remains technically demanding. The orbitozygomatic (OZ) and transmandibular (TM) approaches offer distinct anatomical perspectives and operative corridors.
View Article and Find Full Text PDFMol Cell
August 2025
Lingang Laboratory, Shanghai 200031, China. Electronic address:
YAP/TAZ are transcriptional co-activators that pair with transcription factor TEA/ATTS domains (TEADs) for modulating the Hippo pathway. Previous works propose the potential role of YAP/TAZ phase separation for transcriptional activation, yet the biomolecular basis of endogenous YAP/TAZ-TEAD condensates remains unclear. Here, we dissect their endogenous morphology, revealing that YAP/TAZ are client proteins recruited to TEAD condensates in various human cell lines.
View Article and Find Full Text PDF