98%
921
2 minutes
20
Background: Meningioma is the most common primary central nervous system neoplasm, accounting for about a third of all brain tumors. Because their growth rates and prognosis cannot be accurately estimated, biomarkers that enable prediction of their biological behavior would be clinically beneficial.
Objective: To identify coding and noncoding RNAs crucial in meningioma prognostication and pathogenesis.
Methods: Total RNA was purified from formalin-fixed and paraffin-embedded tumor samples of 64 patients with meningioma with distinct clinical characteristics (16 recurrent, 30 nonrecurrent with follow-up of >5 years, and 18 with follow-up of <5 years without recurrence). Transcriptomic sequencing was performed using the HiSeq 2500 platform (Illumina), and biological and functional differences between meningiomas of different types were evaluated by analyzing differentially expression of messenger RNA (mRNA) and long noncoding RNA (IncRNA). The prognostic value of 11 differentially expressed RNAs was then validated in an independent cohort of 90 patients using reverse transcription quantitative (real-time) polymerase chain reaction.
Results: In total, 69 mRNAs and 108 lncRNAs exhibited significant differential expression between recurrent and nonrecurrent meningiomas. Differential expression was also observed with respect to sex (12 mRNAs and 59 lncRNAs), World Health Organization grade (58 mRNAs and 98 lncRNAs), and tumor histogenesis (79 mRNAs and 76 lncRNAs). Lnc-GOLGA6A-1, ISLR2, and AMH showed high prognostic power for predicting meningioma recurrence, while lnc-GOLGA6A-1 was the most significant factor for recurrence risk estimation (1/hazard ratio = 1.31; P = .002).
Conclusion: Transcriptomic sequencing revealed specific gene expression signatures of various clinical subtypes of meningioma. Expression of the lnc-GOLGA61-1 transcript was found to be the most reliable predictor of meningioma recurrence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287111 | PMC |
http://dx.doi.org/10.1227/neu.0000000000002026 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.
Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.
View Article and Find Full Text PDFGenome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Biochem Genet
September 2025
Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.
Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDF