A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. | LitMetric

Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules.

Science

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free 1.8-electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal "diffusion barrier" is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of 21.7% with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abn7696DOI Listing

Publication Analysis

Top Keywords

all-perovskite tandem
16
tandem solar
16
solar modules
12
tandem
5
modules
5
scalable processing
4
processing realizing
4
realizing 217%-efficient
4
all-perovskite
4
217%-efficient all-perovskite
4

Similar Publications