Expanding the use of ethanol as a feedstock for cell-free synthetic biochemistry by implementing acetyl-CoA and ATP generating pathways.

Sci Rep

Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ethanol is a widely available carbon compound that can be increasingly produced with a net negative carbon balance. Carbon-negative ethanol might therefore provide a feedstock for building a wider range of sustainable chemicals. Here we show how ethanol can be converted with a cell free system into acetyl-CoA, a central precursor for myriad biochemicals, and how we can use the energy stored in ethanol to generate ATP, another key molecule important for powering biochemical pathways. The ATP generator produces acetone as a value-added side product. Our ATP generator reached titers of 27 ± 6 mM ATP and 59 ± 15 mM acetone with maximum ATP synthesis rate of 2.8 ± 0.6 mM/h and acetone of 7.8 ± 0.8 mM/h. We illustrated how the ATP generating module can power cell-free biochemical pathways by converting mevalonate into isoprenol at a titer of 12.5 ± 0.8 mM and a maximum productivity of 1.0 ± 0.05 mM/h. These proof-of-principle demonstrations may ultimately find their way to the manufacture of diverse chemicals from ethanol and other simple carbon compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095697PMC
http://dx.doi.org/10.1038/s41598-022-11653-3DOI Listing

Publication Analysis

Top Keywords

atp generating
8
chemicals ethanol
8
biochemical pathways
8
atp generator
8
atp
7
ethanol
5
expanding ethanol
4
ethanol feedstock
4
feedstock cell-free
4
cell-free synthetic
4

Similar Publications

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation.

J Genet Genomics

September 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh

Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.

View Article and Find Full Text PDF

Development of six novel dinuclear calcium(II) complexes based on 8-hydroxyquinoline as anticancer agents.

J Inorg Biochem

September 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China. Electronic address:

This study reports the synthesis and antitumor evaluation of six novel dinuclear calcium(II) complexes with the general formula [Ca(μ-O)(QM)(QH)], designated as CaQ1 through CaQ6. These complexes incorporate various deprotonated 8-hydroxyquinoline ligands (H-QM-H-QM) and 1,10-phenanthroline derivatives (QH), synthesized using Ca(NO)·4HO. The specific compositions are as follows: CaQ1: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = bathophenanthroline; CaQ2: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = bathophenanthroline; CaQ3: H-QM = 5,7-diiodo-8-hydroxyquinoline (x = 3), QH = 1,10-phenanthroline; CaQ4: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = 1,10-phenanthroline; CaQ5: H-QM = clioquinol (x = 4), QH = 1,10-phenanthroline; CaQ6: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = 1,10-phenanthroline.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Although mitochondrial metabolism contributes to tumorigenesis, the specific roles of individual mitochondrial components remain unclear.NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8), a key subunit of mitochondrial complex I, has been implicated in non-hepatic malignancies, but its functional relevance in HCC is unknown.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF