One-step nondestructive functionalization of graphene oxide paper with amines.

RSC Adv

Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U. Ciudad de México 04510 Mexico

Published: April 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct functionalization of prefabricated free-standing graphene oxide paper (GOP) is the only approach suitable for systematic tuning of its mechanical, thermal and electronic characteristics. However, the traditional liquid-phase functionalization can compromise physical integrity of the paper-like material up to its total disintegration. In the present paper, we attempted to apply an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD) as representatives of aliphatic amines, and with 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN) as examples of aromatic amines. The functionalization can be carried out under moderate heating at 150-180 °C for 2 h in vacuum, and proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-modified GOP samples was carried out by means of Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy, thermogravimetric and differential thermal analysis, scanning electron and atomic force microscopy. In addition, we compared stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP samples before and after functionalization. The highest content of amine species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN. The functionalization increased mechanical and thermal stability, as well as the electrical conductivity of GOP. The magnitude of each effect depends on the structure of amine employed, which allows for tuning a given GOP characteristic. Morphological characterization showed that, compared to pristine graphene oxide paper, amine-modified mats become relatively ordered layered structures, in which individual GO sheets are organized in a near-parallel fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080034PMC
http://dx.doi.org/10.1039/c8ra00986dDOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
oxide paper
12
nondestructive functionalization
8
mechanical thermal
8
gop samples
8
electrical conductivity
8
functionalization
7
gop
6
one-step nondestructive
4
functionalization graphene
4

Similar Publications

Artificial nacre based on polydopamine functionalized graphene oxide nanosheets constrained palladium nanocluster with enhanced mechanical properties and catalytical functionalities.

Int J Biol Macromol

September 2025

Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien

Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF