98%
921
2 minutes
20
Epilepsy of infancy with migrating focal seizures (EIMFS) is a kind of epileptic encephalopathy with high genetic heterogeneity. The most common pathogenic gene for EIMFS is potassium sodium-activated channel subfamily T member 1 (KCNT1). Using Sendai virus-mediated reprogramming, we established an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells (PBMCs) of a five-month-old Chinese girl with heterozygous missense mutation (c.2800 G>A) in the KCNT1 gene. The iPSCs were stable during amplification, expressed pluripotent genes, maintained a normal karyotype, and showed characteristics of the three germs layers in an in vitro differentiation assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2022.102798 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
Traumatic Brain Injury (TBI) is a common and debilitating injury, causing long-lasting neurological deficits. Current therapeies for recovery remain inadequate, undersing the urgent need for innovative interventions. In this study, a novel therapeutic approach is introduced that delivers extracellular vesicles (EVs) derived from human-induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with a gelatin-based injectable bioorthogonal hydrogel (BIOGEL).
View Article and Find Full Text PDFBrain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDFFront Toxicol
August 2025
Ncardia Services B.V., Leiden, Netherlands.
Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2025
Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, Dresden 01307, Germany.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.
View Article and Find Full Text PDFCureus
September 2025
Department of Paediatric Histopathology, Alder Hey Children's Hospital, Liverpool, GBR.
Congenital heart disease (CHD) is the most common congenital anomaly. While surgical and interventional advancements have improved survival, the management of associated complications and comorbidities remains complex and would benefit from a personalised approach that more accurately predicts individualised risks and prognoses. Recently, next-generation sequencing has uncovered diverse genetic factors, including epigenetic modifications, somatic mosaicism and regulatory non-coding variants.
View Article and Find Full Text PDF