Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: There is increasing incidence of pulmonary nodules due to the promotion and popularization of low-dose computed tomography (LDCT) screening for potential populations with suspected lung cancer. However, a high rate of false-positive and concern of radiation-related cancer risk of repeated CT scanning remains a major obstacle to its wide application. Here, we aimed to investigate the clinical value of a non-invasive and simple test, named the seven autoantibodies (7-AABs) assay (P53, PGP9.5, SOX2, GAGE7, GUB4-5, MAGEA1, and CAGE), in distinguishing malignant pulmonary diseases from benign ones in routine clinical practice, and construct a neural network diagnostic model with the development of machine learning methods.

Method: A total of 933 patients with lung diseases and 744 with lung nodules were identified. The serum levels of the 7-AABs were tested by an enzyme-linked Immunosorbent assay (ELISA). The primary goal was to assess the sensitivity and specificity of the 7-AABs panel in the detection of lung cancer. ROC curves were used to estimate the diagnosis potential of the 7-AABs in different groups. Next, we constructed a machine learning model based on the 7-AABs and imaging features to evaluate the diagnostic efficacy in lung nodules.

Results: The serum levels of all 7-AABs in the malignant lung diseases group were significantly higher than that in the benign group. The sensitivity and specificity of the 7-AABs panel test were 60.7% and 81.5% in the whole group, and 59.7% and 81.1% in cases with early lung nodules. Comparing to the 7-AABs panel test alone, the neural network model improved the AUC from 0.748 to 0.96 in patients with pulmonary nodules.

Conclusion: The 7-AABs panel may be a promising method for early detection of lung cancer, and we constructed a new diagnostic model with better efficiency to distinguish malignant lung nodules from benign nodules which could be used in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069812PMC
http://dx.doi.org/10.3389/fonc.2022.883543DOI Listing

Publication Analysis

Top Keywords

lung nodules
16
7-aabs panel
16
lung cancer
12
lung
10
7-aabs
9
early lung
8
imaging features
8
clinical practice
8
neural network
8
diagnostic model
8

Similar Publications

Unlabelled: Concurrent presentation of pulmonary nocardiosis and granulomatosis with polyangiitis (GPA) is exceptionally rare and diagnostically challenging, given the overlapping clinical and radiological features. We report a 54-year-old female with fever, cough, weight loss, and arthralgia. Chest imaging showed multiple pulmonary nodules; serology revealed positive anti-neutrophil cytoplasmic antibodies -proteinase 3, and lung biopsy demonstrated necrotizing granulomatous inflammation with Nocardia species.

View Article and Find Full Text PDF

Hepatoid adenocarcinoma of the lung (HAL) is a rare and aggressive subtype of pulmonary adenocarcinoma, with cutaneous metastasis being an uncommon clinical manifestation. A 49-year-old male presented with a painful, nodular skin lesion on the upper back. Histopathological examination confirmed it as a cutaneous metastasis of HAL.

View Article and Find Full Text PDF

Adenocarcinoma of the lung is the most common type of lung cancer and is classified as one of the non-small cell lung cancers. It typically arises in the peripheral regions of the lungs, affecting the dense glandular tissues. Most patients diagnosed with pulmonary adenocarcinoma are current or former smokers and present with nonspecific respiratory symptoms such as a persistent cough and shortness of breath.

View Article and Find Full Text PDF

Purpose: Bronchiolar adenoma (BA) is a rare benign pulmonary neoplasm originating from the bronchial mucosal epithelium and mimics lung adenocarcinoma (LAC) both radiographically and microscopically. This study aimed to develop a nomogram for distinguishing BA from LAC by integrating clinical characteristics and artificial intelligence (AI)-derived histogram parameters across two medical centers.

Methods: This retrospective study included 215 patients with diagnoses confirmed by postoperative pathology from two medical centers.

View Article and Find Full Text PDF

Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.

View Article and Find Full Text PDF