Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multitask learning (MTL) is an open and challenging problem in various real-world applications, such as recommendation systems, natural language processing, and computer vision. The typical way of conducting multitask learning is establishing some global parameter sharing mechanism among all tasks or assigning each task an individual set of parameters with cross-connections between tasks. However, for most existing approaches, the raw features are abstracted step by step, semantic information is mined from input space, and matching relation features are not introduced into the model. To solve the above problems, we propose a novel MMOE-match network to model the matches between medical cases and syndrome elements and introduce the recommendation algorithm into traditional Chinese medicine (TCM) study. Accurate medical record recommendation is significant for intelligent medical treatment. Ranking algorithms can be introduced in multi-TCM scenarios, such as syndrome element recommendation, symptom recommendation, and drug prescription recommendation. The recommendation system includes two main stages: recalling and ranking. The core of recalling and ranking is a two-tower matching network and multitask learning. MMOE-match combines the advantages of recalling and ranking model to design a new network. Furtherly, we try to take the matching network output as the input of multitask learning and compare the matching features designed by the manual. The data show that our model can bring significant positive benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072037PMC
http://dx.doi.org/10.1155/2022/4072563DOI Listing

Publication Analysis

Top Keywords

multitask learning
20
matching network
12
recalling ranking
12
traditional chinese
8
chinese medicine
8
recommendation
8
learning
5
model
5
matching
5
network
5

Similar Publications

Kinship verification via correlation calculation-based multi-task learning.

PLoS One

September 2025

School of Computer Science and Technology, Huaiyin Normal University, Huai'an, Jiangsu, China.

Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF

With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.

View Article and Find Full Text PDF

Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF