98%
921
2 minutes
20
In this article, both experimental and computational methods are employed to investigate the photophysics of rhaponticin (RH). The bathochromic shift was observed in absorption and fluorescence spectra with increasing solvent polarity, which implied that the charge transition of RH involved was π → π*. The results showed that RH possess strong intramolecular charge transfer (ICT), and the most important parameter to characterize the photophysical behavior of RH is the intermolecular hydrogen bonding ability of the solvent. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. Density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. Fluorescence quenching of RH owing to the photoinduced electron transfer (PET) is facilitated in alkaline media. The p value of RH was 6.39, which defined RH as a highly efficient "off-on" switcher. The effect of different metal ions on the fluorescence spectra of RH was also investigated, and the fluorescence quenching of RH depended on the nature of ions. The best performance was accomplished for binding with the Fe ion. The interactions of RH with the Fe ion were studied by FT-IR and HPLC, and the binding parameter was calculated by the Stern-Volmer equation. The results obtained reveal the binding activity of RH can make this a candidate as a good source of new agents for thalassemic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063015 | PMC |
http://dx.doi.org/10.1039/c8ra10153a | DOI Listing |
J Chem Phys
September 2025
Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433 Riyadh, Saudi Arabia.
This research study investigates the relationship between the structural characteristics, water solubility, and protein digestibility of quinoa proteins (QPs) during fermentation. The fermentation process induces structural modifications in QPs, thereby enhancing their surface properties and functional attributes. Using advanced analytical techniques, such as ultraviolet, fluorescence, and FT-IR spectra, it has been demonstrated that fermented QPs exhibit significant structural changes (P < 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
L. V. Pisarzhevsky Institute of Physical Chemistry of NASU SE "RADMA", 31, pr. Nauky ave, Kyiv 03680, Ukraine.
The effect of electron irradiation ( = 1.8 MeV) on the optical properties of polyethylene glycol 400-multiwalled carbon nanotube (PEG-400/MWCNT) nanocomposite films was studied within an absorbed dose range of 0 to 0.4 MGy.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte
Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.
Primary agricultural products are closely related to our daily lives, as they serve not only as raw materials for food processing but also as products directly purchased by consumers. These products face the issue of freshness decline and spoilage during both production and consumption. Freshness degradation induces sensory deterioration and nutritional loss and promotes harmful substance accumulation, causing gastrointestinal issues or even endangering life.
View Article and Find Full Text PDF