Similar Publications

Surfactant-rich aqueous media are common in natural environments. The sea surface microlayer and sea spray droplets are good examples and are also frequently markedly enriched in organic pollutants. This study focuses on the degradation kinetics of organic pollutants initiated by the hydroxyl radical in such surfactant-rich environments.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

This study introduces a new, highly sensitive, and reliable method for detecting and measuring orthophosphate in environmental water samples. This method combines cetyltrimethylammonium bromide (CTAB)-mediated coacervation extraction with digital image-based colorimetry, providing a robust and efficient approach for orthophosphate analysis. In this system, CTAB, a cationic surfactant, serves a dual role as both an ion-pairing agent and an extraction medium.

View Article and Find Full Text PDF

Structure-Guided Engineering of a Bacterial Sesterterpene Synthase for Sesterviridene Diversification.

J Am Chem Soc

September 2025

Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.

Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.

View Article and Find Full Text PDF

Strong intermolecular interactions facilitate the formation of efficient ion transport channels, which, in turn, significantly boost the performance of anion exchange membranes (AEMs). Herein, 9-anthracene methanol with both π-π stacking and hydrogen bonding intermolecular forces is used as a bifunctional unit to synthesize high-performance AEMs through the Friedel-Crafts superacid catalytic reaction for the first time. The π-π stacking in the bifunctional units can induce hydrophilic pyridine cations to aggregate, and the hydrogen bonding can provide transport sites for OH and water molecules in the hydrophobic component.

View Article and Find Full Text PDF