Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems. These self-quenching single-stranded DNA probes are conjugated with a fluorophore and quencher at the terminals, which permits an increase in fluorescence by up to 57-fold upon binding and unquenching. In addition, the engineering of base pair mismatches between the fluorogenic imager probes and docking strands allowed us to achieve both high fluorogenicity and the fast binding kinetics required for fast imaging. We demonstrate a 26-fold increase in imaging speed over regular DNA-PAINT and show that our new implementation enables three-dimensional super-resolution DNA-PAINT imaging without optical sectioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133131PMC
http://dx.doi.org/10.1038/s41592-022-01464-9DOI Listing

Publication Analysis

Top Keywords

fluorogenic dna-paint
8
imaging speed
8
imaging
6
dna-paint faster
4
faster low-background
4
low-background super-resolution
4
super-resolution imaging
4
imaging dna-based
4
dna-based points
4
points accumulation
4

Similar Publications

A main limitation of single-molecule fluorescence (SMF) measurements is the 'high concentration barrier', describing the maximum concentration of fluorescent species tolerable for sufficient signal-to-noise ratio. To address this barrier in several SMF applications, we design fluorogenic probes based on short single-stranded DNAs, fluorescing only upon hybridizing to their complementary target sequence. We engineer the quenching efficiency and fluorescence enhancement upon duplex formation through screening several fluorophore-quencher combinations, label lengths, and sequence motifs, which we utilize as tuning screws to adapt our labels to different experimental designs.

View Article and Find Full Text PDF

Unraveling cellular complexity with transient adapters in highly multiplexed super-resolution imaging.

Cell

March 2024

Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department o

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput.

View Article and Find Full Text PDF

Fluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals.

View Article and Find Full Text PDF

Super-Resolution Tension PAINT Imaging with a Molecular Beacon.

Angew Chem Int Ed Engl

February 2023

Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

DNA-PAINT enabled super-resolution imaging through the transient binding of fluorescently-labelled single-stranded DNA (ssDNA) imagers to target ssDNA. However, its performance is constrained by imager background fluorescence, resulting in relatively long image acquisition and potential artifacts. We designed a molecular beacon (MB) as the PAINT imager.

View Article and Find Full Text PDF

DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems.

View Article and Find Full Text PDF