98%
921
2 minutes
20
The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol-quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually causes a relatively loose (tight) hydrogen bond, which results in a small-barrier (barrier-less) on an excited-state potential energy surface with a slow (fast) ESIPT process with (without) involving the skeletal deformation motion up to the electronic excitation. The skeletal deformation motion that is induced from the largest vibronic excitation with low frequency can assist in decreasing the donor-acceptor distance and lowering the reaction barrier in the excited-state potential energy surface, and thus effectively enhance the ESIPT reaction for PQ-1. The Franck-Condon simulation indicated that the low-frequency mode with vibronic excitation 0 → 1' is an original source of the skeletal deformation vibration. The present simulation presents physical insights for phenol-quinoline molecules in which relatively tight or loose hydrogen bonds can influence the ESIPT reaction process with and without the assistance of the skeletal deformation motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043822 | PMC |
http://dx.doi.org/10.1039/d1ra07042h | DOI Listing |
Nature
September 2025
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.
View Article and Find Full Text PDFExp Neurol
September 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA. Electronic address:
Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.
View Article and Find Full Text PDFClin Case Rep
September 2025
Department of Pediatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China.
Brachyolmia type 4 (BCYM4, OMIM 612847) is a rare skeletal dysplasia characterized by mild epiphyseal and metaphyseal abnormalities. We report a Chinese boy with brachyolmia caused by a novel compound heterozygous mutation in the gene. Prenatal ultrasound revealed shortened long bones, and his birth length was markedly reduced (45 cm, -3.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Body composition metrics such as bodyweight, body condition score (BCS) and muscle condition score (MCS) can be readily recorded as part of veterinary examinations in ageing cats. However, the description of how these parameters change with age, whilst accounting for sex and age-related morbidity, is limited. The aim of this prospective cohort study was to evaluate age, sex and health-related changes in bodyweight, BCS and MCS in client-owned pet cats.
View Article and Find Full Text PDFJ Anat
September 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
Vertebrates exhibit remarkable morphological diversity, with the head representing an exceptionally complex anatomical structure shaped by adaptations to feeding ecology, brain size, and sensory organ specialization. Proper fusion of facial prominences and the coordinated growth of the skull and brain are essential for normal craniofacial development in vertebrates, including humans. Disruptions in these processes, whether due to gene mutations or external factors, can result in craniofacial malformations.
View Article and Find Full Text PDF