98%
921
2 minutes
20
While immunopathology has been widely studied in patients with severe COVID-19, immune responses in non-hospitalized patients have remained largely elusive. We systematically analyze 484 peripheral cellular or soluble immune features in a longitudinal cohort of 63 mild and 15 hospitalized patients versus 14 asymptomatic and 26 household controls. We observe a transient increase of IP10/CXCL10 and interferon-β levels, coordinated responses of dominant SARS-CoV-2-specific CD4 and fewer CD8 T cells, and various antigen-presenting and antibody-secreting cells in mild patients within 3 days of PCR diagnosis. The frequency of key innate immune cells and their functional marker expression are impaired in hospitalized patients at day 1 of inclusion. T cell and dendritic cell responses at day 1 are highly predictive for SARS-CoV-2-specific antibody responses after 3 weeks in mild but not hospitalized patients. Our systematic analysis reveals a combinatorial picture and trajectory of various arms of the highly coordinated early-stage immune responses in mild COVID-19 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960124 | PMC |
http://dx.doi.org/10.1016/j.xcrm.2022.100600 | DOI Listing |
JCI Insight
September 2025
Division of Nephrology, Boston University Chobanian & Avedisian School of Medicine, Boston, United States of America.
Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.
Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.
Clin J Am Soc Nephrol
September 2025
University College London Great Ormond Street Hospital for Children and Institute of Child Health, London, UK.
Background: Experience with icodextrin use in children on long-term peritoneal dialysis is limited. We describe international icodextrin prescription practices and their impact on clinical outcomes: ultrafiltration, blood pressure control, residual kidney function (RKF), technique and patient survival.
Methods: We included patients under 21 years enrolled in the International Pediatric Peritoneal Dialysis Network (IPPN) between 2007 and 2024, on automated PD with a daytime dwell.
Kidney360
September 2025
Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States.
Background: Dialysis in neonates with ESKD is often associated with multiple comorbidities and the need for more intensified dialysis regimens. With recent advances in prenatal interventions and infant specific KRT, survival of neonates with ESKD has improved over the last decade. Little is known however about the impact on the health care system of improved survival in this population.
View Article and Find Full Text PDFClin J Am Soc Nephrol
September 2025
Kidney Division, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Kidney Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, China.
Background: The Therapeutic Effects of Steroids in IgA Nephropathy Global (TESTING) trial demonstrated that glucocorticoid therapy reduced proteinuria and improved kidney outcomes in patients with Immunoglobulin A Nephropathy (IgAN). Galactose-deficient IgA1 (Gd-IgA1) plays a central role in IgAN pathogenesis by promoting immune complex formation. However, the effects of glucocorticoid on pathogenic IgA levels remain unclear.
View Article and Find Full Text PDFJ Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.