98%
921
2 minutes
20
Three-dimensional integrated circuit (3D IC) technologies have been receiving much attention recently due to the near-ending of Moore's law of minimization in 2D IC. However, the reliability of 3D IC, which is greatly influenced by voids and failure in interconnects during the fabrication processes, typically requires slow testing and relies on human's judgement. Thus, the growing demand for 3D IC has generated considerable attention on the importance of reliability analysis and failure prediction. This research conducts 3D X-ray tomographic images combining with AI deep learning based on a convolutional neural network (CNN) for non-destructive analysis of solder interconnects. By training the AI machine using a reliable database of collected images, the AI can quickly detect and predict the interconnect operational faults of solder joints with an accuracy of up to 89.9% based on non-destructive 3D X-ray tomographic images. The important features which determine the "Good" or "Failure" condition for a reflowed microbump, such as area loss percentage at the middle cross-section, are also revealed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035975 | PMC |
http://dx.doi.org/10.1038/s41598-022-08179-z | DOI Listing |
Neural Netw
September 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:
Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Hepatobiliary and Vascular Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
Background: Primary liver cancer, particularly hepatocellular carcinoma (HCC), poses significant clinical challenges due to late-stage diagnosis, tumor heterogeneity, and rapidly evolving therapeutic strategies. While systematic reviews and meta-analyses are essential for updating clinical guidelines, their labor-intensive nature limits timely evidence synthesis.
Objective: This study proposes an automated literature screening workflow powered by large language models (LLMs) to accelerate evidence synthesis for HCC treatment guidelines.
PLoS One
September 2025
Department of Information Technology, Uppsala University, Uppsala, Sweden.
For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".
View Article and Find Full Text PDFPLoS One
September 2025
Symbiosis Institute of Technology, Symbiosis International University, Pune, India.
With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.
View Article and Find Full Text PDF