A machine learning-based screening tool for genetic syndromes in children - Authors' reply.

Lancet Digit Health

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, USA; Department of Pediatrics and Department of Radiology, Schoo

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2589-7500(22)00047-4DOI Listing

Publication Analysis

Top Keywords

machine learning-based
4
learning-based screening
4
screening tool
4
tool genetic
4
genetic syndromes
4
syndromes children
4
children authors'
4
authors' reply
4
machine
1
screening
1

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

The increasing prevalence of diabetes mellitus (DM) and patients' lack of self-management awareness have led to a decline in health-related quality of life (HRQoL). Studies identifying potential risk factors for HRQoL in DM patients and presenting generalized models are relatively scarce. The study aimed to develop and evaluate a machine learning (ML)-based model to predict the HRQoL in adult diabetic patients and to examine the important factors affecting HRQoL.

View Article and Find Full Text PDF

This study aimed to develop and validate a machine learning-based predictive model for assessing the risk of fear of childbirth in pregnant women during late pregnancy. A cross-sectional observational study was conducted from November 2022 to July 2023, involving 406 pregnant women. Six machine learning algorithms, including Lasso-assisted logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGB), support vector machine (SVM), Bayesian network (BN), and k-nearest neighbors (KNN), were used to construct the models with 10-fold cross-validation.

View Article and Find Full Text PDF