98%
921
2 minutes
20
The removal of volatile organic compounds (VOCs) from wastewater containing nonvolatile salts has become an important and interesting case of the application of the pervaporation (PV) process. The aim of this study was to evaluate the influence of salts on the PV removal of ethyl acetate from wastewater using a polydimethylsiloxane (PDMS) membrane. The fouled membrane was then characterized via scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) to investigate salt permeation. The membrane backflushing process was carried out by periodically flushing the permeate side of the tubular membrane. The results demonstrated that salts (NaCl and CaCl) could permeate through the PDMS membrane and were deposited on the permeate side. The presence of salts in the feed solution caused a slight increase in the membrane selectivity and a decrease in the permeate flux. The flux decreased with increasing salt concentration, and a notable effect occurred at higher feed-salt concentrations. A permeate flux of up to 98.3% of the original flux was recovered when the permeation time and backflushing duration were 30 and 5 min, respectively, indicating that the effect of salt deposition on flux reduction could be mitigated. Real, organic, saline wastewater was treated in a pilot plant, which further verified the feasibility of wastewater PV treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029142 | PMC |
http://dx.doi.org/10.3390/membranes12040404 | DOI Listing |
Int J Parasitol Drugs Drug Resist
August 2025
Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India. Electronic address:
Antimalarial resistance is a primary challenge in the treatment of malaria. The ongoing search for novel drug sources remains a critical strategy for addressing this issue. This study evaluated the blood stage antiplasmodial and cytotoxic activities of the crude extract and fractions obtained from Lepidobotrys staudtii.
View Article and Find Full Text PDFChem Biodivers
September 2025
Instituto De Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
Mezilaurus duckei, a Brazilian endemic tree species found exclusively in the Amazon Rainforest, is primarily exploited for timber in construction. Due to its endangered status, this study aimed to investigate the chemical profile and biological properties of the ethanolic extract and its phases derived from M. duckei leaves.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
This study investigated the effects of adding Saccharomycopsis fibuligera (SF) and Pichia kudriavzevii (PK) on microbial communities and flavor substances in industrial xiaoqu light-flavor baijiu production. The result showed that the highest acidity was found in the control group (CK: Saccharomyces cerevisiae and Rhizopus) at the end of fermentation. SF and PK promoted the growth of Rhizopus while decreasing the abundance of S.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.
View Article and Find Full Text PDFChem Biodivers
September 2025
Institute of Chemistry, Federal University of Catalão, Catalão, Brazil.
Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).
View Article and Find Full Text PDF