98%
921
2 minutes
20
A community-reaction network reduction (CNR) approach is presented for mechanism reduction on the basis of a network-based community detection technique, a concept related to pre-equilibrium in chemical kinetics. In this method, the detailed combustion mechanism is first transformed into a weighted network, in which communities of species that have dense inner connections under the critical ignition conditions are identified. By analyzing the community partitions in different regions, we determine the effective functional groups and driving processes. Then, a skeletal model for the overall mechanism is deduced according to the network centrality data, including transition pathway identification and reaction-path flux. The CNR method is illustrated on the hydrogen autoignition system which has been extensively investigated, and a new reduced mechanism involving seven processes is proposed. Dynamics simulations employing the present CNR model show that the computed ignition time and distribution of major species on a wide range of temperature and pressure conditions are in accord with the experiments and results from other methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.2c00240 | DOI Listing |
Environ Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFJ Anim Ecol
September 2025
Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.
Research Highlight: Chen, J., Wang, M. Q.
View Article and Find Full Text PDFLangmuir
September 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China.
Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.
View Article and Find Full Text PDFAnalyst
September 2025
Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
: Postmenopausal conditions can lead to metabolic disorders such as obesity and steatosis. (PT), a prominent traditional Chinese medicine, exerts potential therapeutic effects against hepatic injury. Nevertheless, the extent to which PT ameliorates liver damage resulting from estrogen deficiency, along with the associated mechanisms, remains poorly understood.
View Article and Find Full Text PDFJ Leukoc Biol
September 2025
School of Pharmacy and Medical Science and Central Facility for Genomics, Griffith University, Parklands Drive, QLD, Australia.
There is limited understanding of the impact of anti-IL5 treatment on nasal polyp tissue biology in chronic rhinosinusitis with nasal polyps (CRSwNP). This study examined nasal polyp tissue cellular proteome and transcriptome responses to anti-IL5 treatment in CRSwNP utilising spatial profiling. GeoMx™ Digital Spatial Profiling (DSP) of 80 proteins and 1,833 mRNA targets in the polyp stroma and the whole transcriptome (18,815 mRNA targets) in polyp epithelia was undertaken on sinonasal biopsies collected from 20 individuals with eosinophilic CRSwNP before and after 16 and 24 weeks of mepolizumab treatment.
View Article and Find Full Text PDF