98%
921
2 minutes
20
A method for creating genuine nanopores in high area density on monolayer two-dimensional (2D) metallic oxides has been developed. By use of the strong reduction capability of hydroiodic acid, active metal ions, such as Fe and Co, in 2D oxide nanosheets can be reduced to a divalent charge state (2+). The selective removal of FeO and CoO metal oxide units from the framework can be tuned to produce pores in a range of 1-4 nm. By monitoring of the redox reaction kinetics, the pore area density can be also tuned from ∼0.9 × 10 to ∼3.3 × 10 μm. The universality of this method to produce much smaller pores and higher area density than the previously reported ones has been proven in different oxide nanosheets. To demonstrate their potential applications, ultrasmall metal organic framework particles were grown inside the pores of perforated titania oxide nanosheets. The optimized hybrid film showed ∼100% rejection of methylene blue (MB) from the water. Its water permeance reached 4260 L m h bar, which is 1-3 orders of that for reported 2D membranes with good MB rejections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c01474 | DOI Listing |
Langmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.
Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.
Mater Today Bio
October 2025
Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
Unlabelled: Disuse muscle atrophy (DMA) is characterized by progressive loss of muscle mass and strength, often accompanied by inflammation and macrophage imbalance. Here, we introduce hydrogenated silicene nanosheets (H-silicene) as a novel nanotherapeutic strategy to mitigate DMA through modulating macrophage polarization. H-silicene exhibited good biocompatibility and sustained hydrogen release.
View Article and Find Full Text PDFSelective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan China.
Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.
View Article and Find Full Text PDF