98%
921
2 minutes
20
Climate change is causing the surface temperature to rise and the extreme weather events to increase in frequency and intensity, which will pose potential threats to the survival and health of residents. Beijing is facing multiple challenges such as coping with climate change, urbanization, and population aging, which puts huge decision-making pressure on decision maker. However, few studies that systematically consider the health effects of climate change, urbanization, and population aging for China. Based on the distributed lag nonlinear model (DLNM) and 13 global climate models in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study obtained the temporal and spatial distribution of surface temperature through statistical downscaling methods, and comprehensively explored the independent and comprehensive effects of urbanization and population aging on the projection of future temperature-related cardiovascular disease (CVD) mortality in the context of climate and population change. The results showed that only improving urbanization can reduce future temperature-related CVD mortality by 1.7-18.3%, and only intensified aging can increase future temperature-related CVD mortality by 48.8-325.9%. Taking into account the improving urbanization and intensified aging, future temperature-related CVD mortality would increase by 44.1-256.6%, and the increase was slightly lower than that of only intensified aging. Therefore, the intensified aging was the biggest disadvantage in tackling climate change, which would obviously magnify the mortality risks of temperature-related CVD in the future. Although the advancement of urbanization would alleviate the adverse effects of the intensified aging population, the mitigation effects would be limited. Even so, Urbanization should be continued to reduce health risks for residents. These findings would contribute to formulate policies related to mitigate climate change and reduce baseline mortality rate (especially the elderly) in international mega-city - Beijing. In addition, relevant departments should improve the medical health care level and optimize the allocation of social resources to better cope with and adapt to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2022.107231 | DOI Listing |
Int J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Environmental Science, University of Arizona, Tucson, AZ, United States.
Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.
Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.
Mar Life Sci Technol
August 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China.
Unlabelled: Traditional cultivation methods with defined growth media can only isolate and cultivate a small number of microbes. However, much higher microbial diversity has been detected by cultivation-independent tools from a range of natural ecosystems. These represent a large unexplored pool of potentially novel taxa.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.
Unlabelled: Biological invasions represent one of the main anthropogenic drivers of global change with a substantial impact on biodiversity. Traditional studies predict invasion risk based on the correlation between species' distribution and environmental factors, with little attention to the potential contribution of physiological factors. In this study, we incorporated temperature-dependent sex determination (TSD) and sex-ratio data into species distribution models (SDMs) to assess the current and future suitable habitats for the world's worst invasive reptile species, the pond slider turtle ().
View Article and Find Full Text PDF