A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and validation of a predictive model for acute kidney injury in patients with moderately severe and severe acute pancreatitis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Acute kidney injury is a serious complication of moderately severe and severe acute pancreatitis, which significantly increases mortality. There are currently no reliable tools for early identification of AKI especially severe AKI in these patients. We aim to develop a predictive model so that physicians can assess the risk of AKI and severe AKI, thus take further preventive measures.

Methods: Patients with a diagnosis of MSAP and SAP admitted to our hospital from January 2018 to December 2021 were retrospectively included in the study. The participants were divided into the training and validation cohorts randomly, in a 2:1 ratio. A clinical signature was built based on reproducible features, using the least absolute shrinkage and selection operator method and machine learning. Multivariate logistic regression analysis was used to develop the prediction model. Nomogram performance was determined by its discrimination, calibration, and clinical usefulness.

Results: A total of 996 eligible patients were enrolled. 698 patients were allocated in the training cohort and 298 in the validation cohort. AKI occurred in 148 patients (21%) in the training cohort and 54 (18%) in the validation cohort, respectively. The clinical features, including C-reactive protein, intra-abdominal pressure and serum cysC, were significantly associated with AKI as well as severe AKI. The nomogram showed favorable discrimination, calibration and clinical usefulness.

Conclusions: The novel risk score model has good performance for predicting AKI and severe AKI in MSAP and SAP patients. Application of this model can help clinicians stratify patients for primary prevention, surveillance and early therapeutic intervention to improve care and prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10157-022-02219-8DOI Listing

Publication Analysis

Top Keywords

severe aki
16
aki severe
12
aki
9
predictive model
8
acute kidney
8
kidney injury
8
patients
8
severe
8
moderately severe
8
severe severe
8

Similar Publications