Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Patients with neurofibromatosis type 1 (NF1) develop benign (BPNST), premalignant atypical (ANF), and malignant (MPNST) peripheral nerve sheath tumors. Radiological differentiation of these entities is challenging. Therefore, we aimed to evaluate the value of a magnetic resonance imaging (MRI)-based radiomics machine-learning (ML) classifier for differentiation of these three entities of internal peripheral nerve sheath tumors in NF1 patients.

Methods: MRI was performed at 3T in 36 NF1 patients (20 male; age: 31 ± 11 years). Segmentation of 117 BPNSTs, 17 MPNSTs, and 8 ANFs was manually performed using T2w spectral attenuated inversion recovery sequences. One hundred seven features per lesion were extracted using PyRadiomics and applied for BPNST versus MPNST differentiation. A 5-feature radiomics signature was defined based on the most important features and tested for signature-based BPNST versus MPNST classification (random forest [RF] classification, leave-one-patient-out evaluation). In a second step, signature feature expressions for BPNSTs, ANFs, and MPNSTs were evaluated for radiomics-based classification for these three entities.

Results: The mean area under the receiver operator characteristic curve (AUC) for the radiomics-based BPNST versus MPNST differentiation was 0.94, corresponding to correct classification of on average 16/17 MPNSTs and 114/117 BPNSTs (sensitivity: 94%, specificity: 97%). Exploratory analysis with the eight ANFs revealed intermediate radiomic feature characteristics in-between BPNST and MPNST tumor feature expression.

Conclusion: In this proof-of-principle study, ML using MRI-based radiomics characteristics allows sensitive and specific differentiation of BPNSTs and MPNSTs in NF1 patients. Feature expression of premalignant atypical tumors was distributed in-between benign and malignant tumor feature expressions, which illustrates biological plausibility of the considered radiomics characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527508PMC
http://dx.doi.org/10.1093/neuonc/noac100DOI Listing

Publication Analysis

Top Keywords

radiomics characteristics
12
peripheral nerve
12
nerve sheath
12
sheath tumors
12
bpnst versus
12
versus mpnst
12
magnetic resonance
8
benign malignant
8
neurofibromatosis type
8
premalignant atypical
8

Similar Publications

Purpose: To develop and validate an integrated model based on MR high-resolution vessel wall imaging (HR-VWI) radiomics and clinical features to preoperatively assess periprocedural complications (PC) risk in patients with intracranial atherosclerotic disease (ICAD) undergoing percutaneous transluminal angioplasty and stenting (PTAS).

Methods: This multicenter retrospective study enrolled 601 PTAS patients (PC+, n = 84; PC -, n = 517) from three centers. Patients were divided into training (n = 336), validation (n = 144), and test (n = 121) cohorts.

View Article and Find Full Text PDF

ObjectiveTo evaluate the diagnostic performance of a combined model incorporating ultrasound video-based radiomics features and clinical variables for distinguishing between benign and malignant breast lesions.MethodsA total of 346 patients (173 benign and 173 malignant) were retrospectively enrolled. Breast ultrasound videos were acquired and processed using semi-automatic segmentation in 3D Slicer.

View Article and Find Full Text PDF

Purpose: To develop a magnetic resonance imaging (MRI)-based radiomics nomogram to predict lymphovascular space invasion (LVSI) status in patients with early-stage cervical adenocarcinoma (CAC).

Methods: Clinicopathological and MRI data from 310 patients with histopathologically confirmed early-stage CAC were retrospectively analyzed. Patients were divided into training (n = 186) and validation (n = 124) cohorts.

View Article and Find Full Text PDF

Background: Personalized medicine has transformed disease management by focusing on individual characteristics, driven by advancements in genome mapping and biomarker discoveries.

Objectives: This study aims to develop a predictive model for the early detection of treatment-related cardiac side effects in breast cancer patients by integrating clinical data, high-sensitivity Troponin-T (hs-TropT), radiomics, and dosiomics. The ultimate goal is to identify subclinical cardiotoxicity before clinical symptoms manifest, enabling personalized surveillance strategies.

View Article and Find Full Text PDF

Objective: To develop a deep learning radiomics(DLR)model integrating PET/CT radiomics, deep learning features, and clinical parameters for early prediction of bone oligometastases (≤5 lesions) in breast cancer.

Methods: We retrospectively analyzed 207 breast cancer patients with 312 bone lesions, comprising 107 benign and 205 malignant lesions, including 89 lesions with confirmed bone metastases. Radiomic features were extracted from computed tomography (CT), positron emission tomography (PET), and fused PET/CT images using PyRadiomics embedded in the uAI Research Portal.

View Article and Find Full Text PDF