Direct observation and assessment of phase states of ambient and lab-generated sub-micron particles upon humidification.

RSC Adv

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a new analytical platform that uses a tilted stage (60°) integrated to the Peltier cooling stage interfaced with an Environmental Scanning Electron Microscope (ESEM) to directly observe and assess the phase state of particles as a function of RH at a controlled temperature. Three types of organic particles have been studied: (a) Suwannee River Fulvic Acid (SRFA) particles, (b) lab generated soil organic particles, and (c) field-collected ambient particles. The chemical composition, morphology, and functional groups of individual particles were probed using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM/EDX) and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Results show that all three types of particles are organic-rich, but soil organic particles and ambient particles contain a considerable amount of inorganic species. The phase state can be determined based on the particle's aspect ratio (particle width/height), which we proposed for solid, semisolid, and liquid particles are 1.00-1.30, 1.30-1.85, and >1.85, respectively. We found that solid SRFA particles transition to a semisolid state at ∼90% RH and to the liquid state at ∼97% RH, in agreement with the literature. The solid soil organic particles transition to a semisolid state at ∼85% RH and to the liquid state at ∼97% RH. The solid ambient organic particles transition to a semisolid state at ∼65% RH and the liquid state at ∼97% RH. Our results indicate that this new platform can directly observe and quantitatively indicate the phase transition of field-collected particles under different ambient conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698329PMC
http://dx.doi.org/10.1039/d1ra02530aDOI Listing

Publication Analysis

Top Keywords

organic particles
20
particles
15
soil organic
12
particles transition
12
transition semisolid
12
semisolid state
12
liquid state
12
state ∼97%
12
scanning electron
8
directly observe
8

Similar Publications

Background And Aim: The global demand for efficient poultry production necessitates alternatives to antibiotic growth promoters. This study aimed to evaluate the effects of a novel four-component organic-mineral feed additive (OMFA), comprising lactulose, arginine, ultrafine silicon dioxide particles, and succinic acid, and a three-component variant (without lactulose) on growth performance, nutrient digestibility, elemental tissue composition, and the cecal microbiota of Arbor Acres broiler chickens.

Materials And Methods: One hundred and five one-day-old broiler chicks were randomly allocated into three groups: Control, Group I (four-component OMFA), and Group II (three-component OMFA).

View Article and Find Full Text PDF

Extremely high toxicity of gaseous intermediate/semi volatile organic compounds emitted from typical incomplete biomass burning in China.

J Hazard Mater

September 2025

Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.

Incomplete biomass burning emits complex mixture of gaseous and particulate organic pollutants, yet their chemical speciation and toxicity have not been fully identified. This study profiled the organic fingerprinting primarily emitted from typical incomplete biomass burning through nontargeted analysis and estimated their toxic potencies. Gaseous organics exhibited 2.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF

In this study, the intrinsic properties of jujube were modified through co-fermentation with three non-Saccharomyces yeasts and Lactiplantibacillus plantarum to solve the stickiness and caking problems of jujube powder. Results showed that sugar content in jujube pulp was significantly reduced through microbial metabolism. Notably, sucrose, the major contributor to stickiness, was reduced from over 15.

View Article and Find Full Text PDF

Promotion of CO Reactivity by Organic Acid on Aerosol Surfaces.

J Am Chem Soc

September 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.

View Article and Find Full Text PDF