Insights into the role of F26 residue in the FMN: ATP adenylyltransferase activity of Staphylococcus aureus FAD synthetase.

Biochim Biophys Acta Proteins Proteom

Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the K values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the β4n-β5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2022.140781DOI Listing

Publication Analysis

Top Keywords

f26 residue
16
role f26
12
fmnat activity
12
fmn atp
8
staphylococcus aureus
8
flavin adenine
8
adenine dinucleotide
8
fmnat domain
8
fmn
7
activity
7

Similar Publications

Chiral recognition of CIAC001 isomers in regulating pyruvate kinase M2 and mitigating neuroinflammation.

Eur J Med Chem

March 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Article Synopsis
  • Chiral recognition is crucial for drug effectiveness, as seen in the CBD derivative CIAC001, which targets pyruvate kinase M2 (PKM2) and shows anti-neuroinflammatory and anti-addiction properties.
  • Four chiral isomers of CIAC001 were synthesized, and it was found that (7S)-(-)-CIAC001 had the strongest binding affinity and anti-inflammatory effects, significantly outperforming its (7R)-(-) counterpart.
  • Molecular dynamics simulations indicated that (7S)-(-)-CIAC001's strong interaction with the PKM2 subunit, specifically with phenylalanine at position 26 (F26), is vital for its therapeutic efficacy, emphasizing the importance of chiral recognition in
View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

January 2025

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, S

Article Synopsis
  • This study investigates the effectiveness of sanguinarine, a natural compound, against oral squamous cell carcinoma (OSCC), aiming to understand its mechanism of action.
  • Through extensive screening of drug libraries, sanguinarine was identified as a potent inhibitor that disrupts lysosomal function and impairs autophagic clearance in OSCC cells.
  • The research highlights sanguinarine's interaction with pyruvate kinase M2 (PKM2), leading to the inhibition of crucial cellular processes that contribute to OSCC progression.
View Article and Find Full Text PDF

AtGRP2 is a glycine-rich, RNA-binding protein that plays pivotal roles in abiotic stress response and flowering time regulation in Arabidopsis thaliana. AtGRP2 consists of an N-terminal cold shock domain (CSD) and two C-terminal CCHC-type zinc knuckles interspersed with glycine-rich regions. Here, we investigated the structure, dynamics, and nucleic acid-binding properties of AtGRP2-CSD.

View Article and Find Full Text PDF

Identification of Structural Determinants of the Transport of the Dehydroascorbic Acid Mediated by Glucose Transport GLUT1.

Molecules

January 2023

Research Laboratory in Biological Sciences, Department of Basic Sciences, Medicine Faculty, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.

GLUT1 is a facilitative glucose transporter that can transport oxidized vitamin C (i.e., dehydroascorbic acid) and complements the action of reduced vitamin C transporters.

View Article and Find Full Text PDF

Insights into the role of F26 residue in the FMN: ATP adenylyltransferase activity of Staphylococcus aureus FAD synthetase.

Biochim Biophys Acta Proteins Proteom

May 2022

Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity).

View Article and Find Full Text PDF