98%
921
2 minutes
20
A catalytic asymmetric construction of the bispiro[pyrazolone-dihydropyrrole-oxindole] skeleton catalyzed by chiral DMAP-derived catalyst was successfully achieved by employing recently explored pyrazolone-derived MBH carbonate in high yields with excellent stereoselectivities. The proposed transition state indicated that the intermolecular hydrogen bonds and π-π interactive forces played an essential role in stereoselective chemical transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc00618a | DOI Listing |
Top Curr Chem (Cham)
September 2025
Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.
View Article and Find Full Text PDFOrg Lett
September 2025
Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.
Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFMol Divers
September 2025
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
The catalytic asymmetric Mannich reaction is a multicomponent reaction which affords β-amino carbonyl compounds by utilizing an aldehyde, a primary or secondary amine/ammonia, and a ketone. β-amino carbonyl scaffolds are crucial intermediates for the synthesis of naturally occurring bioactive compounds and their derivatives. The synthesized natural compounds exhibit a broad spectrum of biological activities including anti-fungal, anti-cancer, anti-bacterial, anti-HIV, anti-oxidant, and anti-inflammatory activities.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Deuterated compounds possess significant research value. As interest in chiral deuterated compounds intensifies, various deuteration methods are garnering increased attention. This article primarily reviews the asymmetric deuterium synthesis methods reported in recent years, focusing on the following strategies: one-step reductive deuteration, the series reaction of H/D exchange and asymmetric allylation, the [3+2] asymmetric cycloaddition of 1,3-dipoles and alkenes, asymmetric deuteration photocatalysis, asymmetric deuteration using organic catalysis, and asymmetric deuteration of chiral amino acids and their derivatives through biocatalysis.
View Article and Find Full Text PDF