Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Additive manufacturing (AM) polymers are applied in many branches of the industry due to the possibility of fast and accurate production of elements with various and complex shapes. Fibre Bragg grating sensors (FBG) are widely applied in structural health monitoring (SHM) systems. The main objective of this research is to perform analyses of the influence of embedded FBG sensors on AM polymer elements' durability. Two polymers (M3 X and M3 Crystal) with different mechanical properties were analysed. The tests were performed on samples with FBG sensors embedded in (different alignment) and attached to the surfaces of the elements. Firstly, the samples were exposed to elevated or sub-zero temperatures under stable relative humidity levels. The strain in the samples was measured using fibre Bragg grating (FBG) sensors. The achieved results allow us to determine the relationships between strain and temperature for both materials and the differences in their mechanical response to the thermal loading. Then, the samples were subjected to a tensile test. A comparison of the tensile strength values was performed for the samples without and with embedded FBG sensors. The samples after the tensile tests were compared, showing differences in the mechanisms of failures related to the polymers and the thermal treatment influence on the material internal structure. Additionally, strain values measured by the FBG sensors were compared to the strain values achieved from the testing machine showing a good agreement (especially for M3 X) and indicating the differences in the materials' mechanical properties. The achieved results allow us to conclude there is a lack of influence of embedded FBG sensors on the mechanical durability of AM polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000725PMC
http://dx.doi.org/10.3390/ma15072653DOI Listing

Publication Analysis

Top Keywords

fbg sensors
24
fibre bragg
12
bragg grating
12
embedded fbg
12
influence embedded
8
durability polymers
8
mechanical properties
8
performed samples
8
achieved allow
8
strain values
8

Similar Publications

Real-time and accurate temperature monitoring has been widely recognized in both academia and industry to ensure battery operation safety. Traditional techniques are generally limited to incomplete information caused by discrete sampling points. Hence, the spiral-serpentine distributed optical fiber sensor (DOFS) layout is presented to realize in-situ full-range temperature measurement.

View Article and Find Full Text PDF

The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of slurry properties and grouting simulations. Through systematic analysis of ultrafine cement grout performance across water-cement (W/C) ratios, this study establishes optimal injectable mix proportions.

View Article and Find Full Text PDF

To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials.

View Article and Find Full Text PDF

Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy.

View Article and Find Full Text PDF

Spatial-Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays.

Sensors (Basel)

August 2025

Key National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules.

View Article and Find Full Text PDF