98%
921
2 minutes
20
The Jiangzhe Area was relatively common area that rely on industrial process for rapid development with serious heavy metals contamination. This study investigated the spatial, vertical and speciation distribution, correlation of heavy metals, as well as assessed pollution and health risks in three representative contamination industries at Jingjiang (electroplating site), Taizhou (e-waste recycling site) and Wenzhou (leather production site) in the Jiangzhe Area. The results indicated that the Cr(VI) pollution was serious in all three sites and there was a tendency to gradually decrease with depth. As for other heavy metals, not only the total concentration, but also the addition of acid soluble and reducible speciation generally decreased with soil depth at Jingjiang and Taizhou sites. Significantly positive correlations supported by correlation analysis were detected between the following elements: Cu-Ni (p < 0.01), Cr(VI)-Ni (p < 0.05) and Cr(VI)-Cu (p < 0.05) at Jingjiang site, Cu-Ni (p < 0.01), Cu-Cd (p < 0.01) and Ni-Cd (p < 0.05) at Taizhou site indicating possibly the same sources and pathways of origin, while the significantly negative correlation of Cd-Ni (p < 0.05) at Wenzhou site meaning the different sources. As regards the pollution assessment of topsoil, the mean PI value indicated that Cr(VI) contaminated severe in all three sites. In general, Jingjiang site was severe pollution (4.06), while Taizhou and Wenzhou (2.27 and 2.66) were moderate pollution, as NIPI value shown. In terms of health risk assessment that received much attention, non-carcinogenic risks caused by Pb contamination were significant for children at Jingjiang and Taizhou sites, with the HI values of 3.42E+ 00 and 2.03E+ 00, respectively. Ni caused unacceptable carcinogenic risk for both adults and children at all three sites. The present study can help to better understand the contamination characteristics of heavy metals in the commonly developed industrial area, and thus to control the environmental quality, so as to truly achieve the goal of "Green Deal objectives ".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113462 | DOI Listing |
Ecotoxicology
September 2025
Department of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
Bull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia.
The use of mercury (Hg) in artisanal gold mining in San Martin de Loba (SML), Bolivar, Colombia, poses significant environmental and health risks. This study aimed to evaluate total mercury (T-Hg) concentrations in chicken feathers (Gallus gallus) and soils from SML, and compare them with those obtained in a reference site without mining activity (Arjona). A total of 40 chickens and 30 soil samples were taken in SML, along with 31 chickens and 21 soil samples in Arjona.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFActa Parasitol
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.
Methods: The location of Ferric reductase in Blastocystis sp.