Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237199PMC
http://dx.doi.org/10.1007/s13238-022-00908-4DOI Listing

Publication Analysis

Top Keywords

heart maturation
20
state transition
8
postnatal heart
8
cardiac function
8
regenerative medicine
8
transition state
8
state cms
8
heart
7
maturation
6
postnatal
5

Similar Publications

The ontogeny of circadian clock gene expression during mouse fetal development.

Biochem Biophys Rep

December 2025

Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.

The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.

View Article and Find Full Text PDF

Objectives: As a two-dimensional modality, venography has limitations in its capacity to measure lumen caliber and to assess stenotic disease accurately. This has implications in the management of end-stage renal-disease (ESRD) patients "no-option" candidates access for arteriovenous fistula (AVF) or graft (AVG) creation secondary to high risk of vascular access failure. The incremental diagnostic and clinical impact of intravascular ultrasound (IVUS) was quantified in this tunneled dialysis catheter dependent ESRD cohort.

View Article and Find Full Text PDF

Antenatal betamethasone impairs markers of cardiac development and function in near-term lambs.

Exp Physiol

September 2025

Early Origins of Adult Health Research Group, Health and Biomedical Innovation; UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.

Antenatal corticosteroids are commonly administered to promote fetal lung maturation; however, their impact on heart development is not well understood. This study therefore investigated the effects of antenatal betamethasone on cardiac development in near-term lambs, using tissues collected from a cohort of ewes with mild experimentally induced asthma. Pregnant ewes received two doses of either saline (Saline) or betamethasone (Betamethasone, intramuscular, 11.

View Article and Find Full Text PDF

In vitro studies have implicated orphan receptor GPRC5B in β-cell survival, proliferation and insulin secretion, but its relevance for glucose homeostasis in vivo is largely unknown. Using tamoxifen-inducible, β-cell-specific GPRC5B knockout mice (Ins-G5b-KOs) we show here that loss of GPRC5B does not affect β-cell function in the lean state, but results in strongly reduced insulin secretion and disturbed glucose tolerance in mice subjected to high fat diet for 16 weeks. Flow cytometry and single-cell expression analyses in islets from obese mice show a reduced β-cell abundance and a less mature β-cell phenotype in Ins-G5b-KOs.

View Article and Find Full Text PDF

The transition from reconstructive to regenerative strategies in vascular surgery has intensified the need for grafts that are biocompatible, growth-capable, and resistant to thrombosis. Addressing this challenge, Park et al. introduce a groundbreaking method for engineering fully biological, endothelialized tissue-engineered vascular conduits (TEVCs) using decellularized human umbilical arteries (dHUAs) coated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs).

View Article and Find Full Text PDF