98%
921
2 minutes
20
Universal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991241 | PMC |
http://dx.doi.org/10.1038/s41467-022-29549-1 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
C.F.E.B Sisley Paris, 32 Avenue des Béthunes, 95310 Saint Ouen L'Aumône, France.
The development of alternative methods to animal testing has gained momentum over the years, including the rapid growth of methods, which are faster and more cost-effective. A large number of tools have been published, focusing on Read-Across, (quantitative) Structure-Activity Relationship ((Q)SAR) models, and Physiologically Based Pharmacokinetic (PBPK) models. All of these methods play a crucial role in the risk assessment for cosmetics.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Department of Bioengineering, Imperial College London, London, UK.
Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.
View Article and Find Full Text PDF