Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: Recently, dose reference levels (DRLs) have been defined in Germany for auxiliary low-dose CT scans in hybrid SPECT/CT and PET/CT examinations, based on data from 2016/17. Here, another survey from 2020 was evaluated and compared with the new DRLs as well as with similar surveys from foreign countries.

Methods: The survey, which had already been conducted in the Nordic countries, queried for various examinations including the following values: patient weight and height, volume CT dose index (CTDI), dose length product (DLP). For each examination, statistical parameters such as the third quartile (Q3) were determined from all submitted CTDI and DLP values. Additionally, for examinations comprising datasets from at least 10 systems, the third quartile (Q3-Med) of the respective median values of each system was calculated. Q3 and Q3-Med were compared with the newly published DRLs from Germany and values from similar studies from other countries.

Results: Data from 15 SPECT/CT and 13 PET/CT systems from 15 nuclear medicine departments were collected. For the following examinations datasets from more than 10 systems were submitted: SPECT lung VQ, SPECT bone, SPECT&PET cardiac, PET brain, PET oncology. Especially for examinations of the thorax and heart, the new DRLs are very strict compared to this study. The CTDI values for examinations of the head were lower in this study than the DRLs prescribe now.

Conclusions: For certain examination types, there is a need for dose optimization at some clinics and devices in order to take into account the new DRLs in Germany in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1759-3900DOI Listing

Publication Analysis

Top Keywords

spect/ct pet/ct
12
low-dose scans
8
pet/ct examinations
8
third quartile
8
datasets systems
8
drls germany
8
examinations
7
drls
6
values
5
radiation doses
4

Similar Publications

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Background: Cardiac positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are widely used for the assessment of coronary artery disease. While SPECT remains more available, workforce shortages and training demands contribute to geographic disparities in PET availability, impacting patient access to advanced imaging. Therefore, we assessed trends in the U.

View Article and Find Full Text PDF

Solid lipid nanoparticles in imaging, diagnostics and theranostics: A review of a decade of innovations and clinical applications.

Colloids Surf B Biointerfaces

September 2025

Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA. Electronic address:

The clinical demand for safer, more precise, and functionally versatile imaging tools has intensified with the increasing complexity of disease diagnosis and management. Despite major strides in imaging technologies such as MRI, CT, USG, and PET/SPECT, many modalities are grappled by issues including low specificity, high systemic toxicity of contrast agents, and limited ability to provide real-time functional data. Dreaded by these shortcomings, nanotechnology-based approaches such as liposomes, quantum dots (QDs), polymeric nanoparticles (NPs), gold NPs, lipid NPs, and metallic NPs have emerged as promising alternatives.

View Article and Find Full Text PDF

Systemic amyloidosis is a complex disorder, making early and accurate diagnosis challenging. The most common types are associated with misfolded transthyretin or immunoglobulin light chains, where cardiac and renal amyloidosis portend the worst prognosis. Peptide p5+14 can bind all types of amyloid via multivalent electrostatic interactions.

View Article and Find Full Text PDF

Murine double minute 2 (MDM2, also known as human double minute 2 or HDM2) is a negative regulator of the tumor suppressor protein p53 and is overexpressed in many cancers. Over the past two decades, substantial progress has been made in developing inhibitors of the MDM2-p53 interaction, thereby allowing the p53 protein to exert antitumor effects through cell apoptosis and cycle arrest. While there are currently no FDA-approved MDM2 inhibitors available, several small molecule MDM2 inhibitors and a stapled peptide inhibitor of the MDM2-p53 interaction are in clinical development.

View Article and Find Full Text PDF