Single Cell Approaches to Understand the Earliest Steps in Heart Development.

Curr Cardiol Rep

Aix-Marseille Univ, INSERM, MMG, 13005, Marseille, France.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Cardiac progenitors are the building blocks of the heart. Our knowledge, on how these progenitors build the heart, has considerably increased over the last two decades with the development of single cell approaches. We discuss the lessons learnt from clonal analyses and from single cell sequencing technologies on the understanding of the earliest steps of cardiac specification and lineage segregation.

Recent Findings: While experiments were initially performed at the population level, the development of approaches to investigate heart development at the single cell resolution has clearly demonstrated that cardiac progenitors are highly heterogeneous, with different progenitors contributing to different cardiac regions and different cardiac cell types. Some critical transcriptional determinants have also been identified for cardiac progenitor specification. Single cell approaches have finally provided insights into the spatio-temporal specification of unipotent and multipotent cardiac progenitors and provided a framework for investigating congenital heart defects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11886-022-01681-wDOI Listing

Publication Analysis

Top Keywords

single cell
20
cell approaches
12
cardiac progenitors
12
earliest steps
8
heart development
8
development single
8
cardiac
7
single
5
heart
5
progenitors
5

Similar Publications

Importance: Merkel cell carcinoma (MCC) is typically caused by the Merkel cell polyomavirus (MCPyV) and recurs in 40% of patients. Half of patients with MCC produce antibodies to MCPyV oncoproteins, the titers of which rise with disease recurrence and fall after successful treatment.

Objective: To assess the utility of MCPyV oncoprotein antibodies for early detection of first recurrence of MCC in a real-world clinical setting.

View Article and Find Full Text PDF

IntroductionDaratumumab is a therapeutic cornerstone of the management of multiple myeloma, exerting its anti-myeloma activity through targeting of the cell surface glycoprotein CD38 on plasma cells. While originally given intravenously, the subcutaneous formulation, daratumumab hyaluronidase injection (Dara SC), has been associated with non-inferior efficacy and lower infusion-related reaction rates (IRRs) in the treatment of multiple myeloma and light chain amyloidosis. A noted benefit of Dara SC is a short administration time; however, the optimal observation time post injection to ensure patient safety is unclear from the drug labeling.

View Article and Find Full Text PDF

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF