Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

K+/Na+ homeostasis is important for land plants, particularly under salt stress. In this study, the structure and ion transport properties of the high-affinity K+ transporter (HKT) of the liverwort Marchantia polymorpha were investigated. Only one HKT gene, MpHKT1, was identified in the genome of M. polymorpha. Phylogenetic analysis of HKT proteins revealed that non-seed plants possess HKTs grouped into a clade independent of the other two clades including HKTs of angiosperms. A distinct long hydrophilic domain was found in the C-terminus of MpHKT1. Complementary DNA (cDNA) of truncated MpHKT1 (t-MpHKT1) encoding the MpHKT_Δ596-812 protein was used to examine the functions of the C-terminal domain. Both MpHKT1 transporters fused with enhanced green fluorescent protein at the N-terminus were localized to the plasma membrane when expressed in rice protoplasts. Two-electrode voltage clamp experiments using Xenopus laevis oocytes indicated that MpHKT1 mediated the transport of monovalent alkali cations with higher selectivity for Na+ and K+, but truncation of the C-terminal domain significantly reduced the transport activity with a decrease in the Na+ permeability. Overexpression of MpHKT1 or t-MpHKT1 in M. polymorpha conferred accumulation of higher Na+ levels and showed higher Na+ uptake rates, compared to those of wild-type plants; however, phenotypes with t-MpHKT1 were consistently weaker than those with MpHKT1. Together, these findings suggest that the hydrophilic C-terminal domain plays a unique role in the regulation of transport activity and ion selectivity of MpHKT1.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcac044DOI Listing

Publication Analysis

Top Keywords

c-terminal domain
12
hydrophilic domain
8
liverwort marchantia
8
marchantia polymorpha
8
mphkt1
8
mphkt1 t-mphkt1
8
transport activity
8
higher na+
8
domain
5
distinct functions
4

Similar Publications

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

A Novel Homozygous Nonsense Pathogenic Variant of the CPAMD8 Gene Associated With Congenital Microcoria.

Clin Genet

September 2025

Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, Heilongjiang Province, People's Republic of China.

Congenital microcoria (MCOR) is a rare inherited ocular disorder. Here, we describe a novel nonsense variant in the CPAMD8 gene in a patient with MCOR. We conducted a comprehensive clinical examination of a patient diagnosed with MCOR and performed whole-exome sequencing to identify potential pathogenic variants.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.

View Article and Find Full Text PDF

SUMO-modified Tripartite Motif Protein 28 (TRIM28; KAP1) plays a crucial role in repressing endogenous retroelement (ERE) transcription. We previously provided evidence that loss of SUMO-modified TRIM28 triggered by influenza A virus (IAV) infection promotes activation of host antiviral immunity via a mechanism involving derepression of EREs and production of immunostimulatory RNAs. While the IAV NS1 protein might limit consequences of such activation via its dsRNA-binding activity, we hypothesized that other human pathogenic viruses could have evolved more direct strategies to counteract this potential ERE-based defense system.

View Article and Find Full Text PDF