Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Imaging response assessment is a cornerstone of patient care and drug development in oncology. Clinicians/clinical researchers rely on tumor imaging to estimate the impact of new treatments and guide decision making for patients and candidate therapies. This is important in brain cancer, where associations between tumor size/growth and emerging neurological deficits are strong. Accurately measuring the impact of a new therapy on tumor growth early in clinical development, where patient numbers are small, would be valuable for decision making regarding late-stage development activation. Current attempts to measure the impact of a new therapy have limited influence on clinical development, as determination of progression, stability or response does not currently account for individual tumor growth kinetics prior to the initiation of experimental therapies. Therefore, we posit that imaging-based response assessment, often used as a tool for estimating clinical effect, is incomplete as it does not adequately account for growth trajectories or biological characteristics of tumors prior to the introduction of an investigational agent. Here, we propose modifications to the existing framework for evaluating imaging assessment in primary brain tumors that will provide a more reliable understanding of treatment effects. Measuring tumor growth trajectories prior to a given intervention may allow us to more confidently conclude whether there is an anti-tumor effect. This updated approach to imaging-based tumor response assessment is intended to improve our ability to select candidate therapies for later-stage development, including those that may not meet currently sought thresholds for "response" and ultimately lead to identification of effective treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340639PMC
http://dx.doi.org/10.1093/neuonc/noac086DOI Listing

Publication Analysis

Top Keywords

response assessment
12
tumor growth
12
brain tumors
8
decision making
8
candidate therapies
8
impact therapy
8
clinical development
8
growth trajectories
8
tumor
6
development
5

Similar Publications

Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.

View Article and Find Full Text PDF

Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated death globally. Second-line therapies are crucial for improving survival and quality of life among individuals suffering from advanced HCC who have not responded to first-line therapies. This study sought to evaluate the safety and efficacy of different second-line therapies for advanced HCC by network meta-analysis.

View Article and Find Full Text PDF

Background: With the development of artificial intelligence, obtaining patient-centered medical information through large language models (LLMs) is crucial for patient education. However, existing digital resources in online health care have heterogeneous quality, and the reliability and readability of content generated by various AI models need to be evaluated to meet the needs of patients with different levels of cultural literacy.

Objective: This study aims to compare the accuracy and readability of different LLMs in providing medical information related to gynecomastia, and explore the most promising science education tools in practical clinical applications.

View Article and Find Full Text PDF