98%
921
2 minutes
20
For de novo mutational signature analysis, the critical first step is to decide how many signatures should be expected in a cancer genomics study. An incorrect number could mislead downstream analyses. Here we present SUITOR (Selecting the nUmber of mutatIonal signaTures thrOugh cRoss-validation), an unsupervised cross-validation method that requires little assumptions and no numerical approximations to select the optimal number of signatures without overfitting the data. In vitro studies and in silico simulations demonstrated that SUITOR can correctly identify signatures, some of which were missed by other widely used methods. Applied to 2,540 whole-genome sequenced tumors across 22 cancer types, SUITOR selected signatures with the smallest prediction errors and almost all signatures of breast cancer selected by SUITOR were validated in an independent breast cancer study. SUITOR is a powerful tool to select the optimal number of mutational signatures, facilitating downstream analyses with etiological or therapeutic importance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009674 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1009309 | DOI Listing |
N Engl J Med
September 2025
Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
Background: Previous results from this phase 3 trial showed that progression-free survival among participants with previously untreated (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC) was significantly improved with amivantamab-lazertinib as compared with osimertinib. Results of the protocol-specified final overall survival analysis in this trial have not been reported.
Methods: We randomly assigned, in a 2:2:1 ratio, participants with previously untreated -mutated (exon 19 deletion or L858R substitution), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib, osimertinib, or lazertinib.
Background: Turner syndrome (TS), also known as congenital ovarian hypoplasia, is one of the most common sex chromosome diseases in women. It is caused by the complete or partial deletion or structural change of one X chromosome in all or part of somatic cells. A rare case of karyotype Turner syndrome is reported.
View Article and Find Full Text PDFMol Ecol Resour
September 2025
College of Life Sciences, Henan Normal University, Xinxiang, China.
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Diagnosis and Treatment Center for Children, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
Rationale: Phelan-McDermid syndrome, also known as chromosome 22q13.3 deletion syndrome, is a genetic disorder primarily caused by a chromosome 22q13.3 deletion or mutation.
View Article and Find Full Text PDFBMC Res Notes
September 2025
Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).
View Article and Find Full Text PDF