Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Members of the family of RAS proto-oncogenes, discovered just over 40 years ago, were among the first cancer-initiating genes to be discovered. Of the three RAS family members, KRAS is the most frequently mutated in human cancers. Despite intensive biological and biochemical study of RAS proteins over the past four decades, we are only now starting to devise therapeutic strategies to target their oncogenic properties. Here, we highlight the distinct biochemical properties of common and rare KRAS alleles, enabling their classification into functional subtypes. We also discuss the implications of this functional classification for potential therapeutic avenues targeting mutant subtypes.

Significance: Efforts in the recent past to inhibit KRAS oncogenicity have focused on kinases that function in downstream signal transduction cascades, although preclinical successes have not translated to patients with KRAS-mutant cancer. Recently, clinically effective covalent inhibitors of KRASG12C have been developed, establishing two principles that form a foundation for future efforts. First, KRAS is druggable. Second, each mutant form of KRAS is likely to have properties that make it uniquely druggable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988514PMC
http://dx.doi.org/10.1158/2159-8290.CD-22-0035DOI Listing

Publication Analysis

Top Keywords

kras
5
classification kras-activating
4
kras-activating mutations
4
mutations implications
4
implications therapeutic
4
therapeutic intervention
4
intervention unlabelled
4
unlabelled members
4
members family
4
family ras
4

Similar Publications

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Introduction: Metastatic colorectal cancer (mCRC) exhibits significant heterogeneity in molecular profiles, influencing treatment response and patient outcomes. Mutations in v-raf murine sarcoma viral oncogene homolog B1 () and rat sarcoma () family genes are commonly observed in mCRC. Though originally thought to be mutually exclusive, recent data have shown that patients may present with concomitant and mutations, posing unique challenges and implications for clinical management.

View Article and Find Full Text PDF

Over the past decade, the discovery of immunotherapy and targeted therapy has set new standards for the management of advanced non-small cell lung cancer (NSCLC). This study aims to investigate the prevalence of , , , , , , and mutations in patients with NSCLC within the Middle East and North Africa (MENA) region and to assess the current state of molecular testing and targeted treatments in the Gulf Cooperation Council (GCC) region. The systematic literature review was performed using PubMed, Google Scholar, and Google searches to identify studies on the prevalence of , , , , , , and mutations in patients with NSCLC in the MENA region.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with limited treatment options and poor prognosis. Recent advances in cancer genomic analysis enable the identification of actionable gene alterations, opening new opportunities for personalized therapy. Among these, homologous recombination DNA repair (HRR) gene alterations are associated with distinct biological behavior, favorable prognosis, and increased sensitivity to platinum-based chemotherapy.

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) is a standard first-line treatment for stage IV NSCLC without actionable oncogenic alterations. mutations, prevalent in 30% to 40% lung adenocarcinomas (LUAD) in Western populations, currently lack targeted first-line therapies. This study aimed to assess the predictive value of mutations for clinical outcomes after distinct ICB regimens, validating our previous findings in a larger cohort with extended follow-up.

View Article and Find Full Text PDF