98%
921
2 minutes
20
Insects used to treat organic waste streams and produce valuable protein products are increasingly exposed to plastic contaminated source material assimilating plastic carbon into organic biomass, which is pervasive and hazardous to organisms. Our understanding of this increased insect-plastic interaction remains limited and needs urgent scientific attention if plastic biodegradation and production rates of quality protein are to be improved. Herein, we investigated the biochemical impact of various plastics using three insect models. Black Soldier Fly (BSF), Mealworm (MW), and Wax Moth (WM) larva were each exposed to a plastic substrate (PET, PE, PS, Expanded PE, PP, and PLA) as the primary carbon source for five days to explore any positive metabolic benefits in terms of insect performance and plastic degradation potential. Central carbon metabolism (CCM) metabolites were analyzed via a targeted tMRM liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS) method. Unique expressed pathways were observed for each insect model. When reared on PET, BSF larvae were found to have an elevated pyrimidine metabolism, while the purine metabolism pathway was strongly expressed on other plastics. BSF also exhibited a downregulated Vitamin B6 metabolism across all plastics, indicating a likely gut-symbiont breakdown. The MW and WM model insects were metabolically more active on PLA and expanded foam plastics. Further, WM exhibited an elevation in Vitamin B6 metabolism. This data suggests a positive insect-specific interaction towards certain plastic types that warrants further investigation. It is anticipated that through deeper insight into the metabolic impact and benefits afforded from certain plastics, an insect biotransformation pipeline can be established that links fit-for-purpose insect models to individual plastic types that address our growing plastic waste issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154840 | DOI Listing |
Environ Health Prev Med
September 2025
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan.
Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
Room-temperature crystallization of a cobalt-aminoterephthalate framework (CoBDC-NH) directly on 3D-printed polylactic acid (PLA) yields a super-wetting membrane that reconciles permeability and selectivity in oil-water separation. The ambient-pressure route dispenses with conventional hydrothermal steps and preserves the PLA architecture. Molecular dynamics (MD) combined with density-functional (DFT) calculations reveal that NaOH activation exposes carboxylate sites, while trace polyvinylpyrrolidone amplifies van der Waals forces, uniformly dispersing Co nuclei and anchoring the metal-organic framework (MOF) layer.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Division of Plastic Surgery, Stanford University School of Medicine, Stanford.
Background: Spring-mediated cranioplasty (SMC) is a safe and effective treatment for craniosynostosis. The authors describe the largest cohort of endoscopic SMC for coronal craniosynostosis to date, highlighting the evolution of their technique.
Methods: The authors retrospectively reviewed patients who underwent endoscopic coronal suturectomy and SMC between 2017 and 2023.
Clin Orthop Relat Res
September 2025
Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.
View Article and Find Full Text PDF