Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dynamic diffraction gratings (DDGs) are considered as one of the most promising technologies for application in smart optical devices because of their dynamic regulation of light propagation on demand; however, it is still a challenge to fabricate dynamic periodic micro/nanostructures due to limited materials and processes. Here, a facile and feasible strategy to construct a near-infrared (NIR) radiation-driven DDG is developed based on a double-sided surface pattern, which is fabricated by dynamic wrinkles and/or soft-imprinted static wrinkles. Poly(dimethylsiloxane) (PDMS) containing carbon nanotubes (CNTs) serves as the substrate, and wrinkles are formed on both sides. The resulting double-sided wrinkle pattern can be used as a DDG to generate various adjustable two-dimensional (2D) diffraction patterns driven by NIR light. Furthermore, with various combinations of wrinkles, we demonstrated a single-sided responsive DDG and a double-sided responsive DDG to realize the evolution of diffraction patterns from 2D to one-dimensional (1D) and 2D to zero-dimensional (0D), respectively. The results provide an alternative for DDGs that will have wide applications in smart display, sensing, and imaging systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03235 | DOI Listing |