98%
921
2 minutes
20
We present the structure of a photoactivated animal (6-4) photolyase in its radical pair state, captured by serial crystallography. We observe how a conserved asparigine moves towards the semiquinone FAD chromophore and stabilizes it by hydrogen bonding. Several amino acids around the final tryptophan radical rearrange, opening it up to the solvent. The structure explains how the protein environment stabilizes the radical pair state, which is crucial for function of (6-4) photolyases and cryptochromes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008703 | PMC |
http://dx.doi.org/10.1039/d2cc00376g | DOI Listing |
J Am Chem Soc
September 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.
View Article and Find Full Text PDFKhirurgiia (Mosk)
September 2025
Dagestan State Medical University, Makhachkala, Russia.
Objective: To analyze the effectiveness of minimally invasive surgery for small and medium sized liver cysts.
Material And Methods: We used minimally invasive technologies in 331 patients with echinococcal liver cysts (small cysts (<3.5 cm) - 49 (14.
J Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFACS Macro Lett
September 2025
Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
Alkyne groups provide exceptional versatility for functionalization in macromolecular systems. However, the controlled anionic ring-opening polymerization (AROP) of epoxide monomers bearing terminal alkynes remains challenging due to the lability of alkynes under strongly basic conditions. Herein, we present a controlled AROP of glycidyl propargyl ether enabled by Lewis pair organocatalysis, employing a phosphazene base and triethylborane.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
Iron-nitrogen-carbon (Fe-N-C) catalysts are considered the most active platinum-free alternative for oxygen reduction reaction (ORR), yet the generated reactive oxygen species (ROS) from general mechanistic pathway rapidly impair the ORR activity and stability of Fe-N-C. Herein, we establish and report an ORR pathway-switching strategy to circumvent ROS generation and fundamentally improve the activity and stability of Fe-N-C via DFT guided catalyst design. The constructed Fe-V atomic pair catalyst (FeV-NC) with NFe-N-VN configuration enables side-on adsorption of O and subsequent direct-breaking of the O═O bond to form O*, thereby avoiding the formation of ROS radicals.
View Article and Find Full Text PDF