A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. | LitMetric

Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS.

Curr Opin Pharmacol

Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The key pathology of multiple sclerosis (MS) comprises demyelination, axonal damage, and neuronal loss, and when MS develops into the progressive phase it is essentially untreatable. Identifying new targets in both axons and oligodendrocyte progenitor cells (OPCs) and rejuvenating the aged OPCs holds promise for this unmet medical need. We summarize here the recent evidence showing that mitochondria in both axons and OPCs are impaired, and lipid metabolism of OPCs within demyelinated lesion and in the aged CNS is disturbed. Given that emerging evidence shows that rewiring cellular metabolism regulates stem cell aging, to protect axons from degeneration and promote differentiation of OPCs, we propose that restoring the impaired metabolism of both OPCs and axons in the aged CNS in a synergistic way could be a promising strategy to enhance remyelination in the aged CNS, leading to novel drug-based approaches to treat the progressive phase of MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2022.102205DOI Listing

Publication Analysis

Top Keywords

aged cns
16
impaired metabolism
8
oligodendrocyte progenitor
8
progenitor cells
8
demyelinated lesion
8
lesion aged
8
progressive phase
8
metabolism opcs
8
opcs
6
axons
5

Similar Publications