98%
921
2 minutes
20
Background: Accurate specimen analysis of skull base tumors is essential for providing personalized surgical treatment strategies. Intraoperative specimen interpretation can be challenging because of the wide range of skull base pathologies and lack of intraoperative pathology resources.
Objective: To develop an independent and parallel intraoperative workflow that can provide rapid and accurate skull base tumor specimen analysis using label-free optical imaging and artificial intelligence.
Methods: We used a fiber laser-based, label-free, nonconsumptive, high-resolution microscopy method (<60 seconds per 1 × 1 mm2), called stimulated Raman histology (SRH), to image a consecutive, multicenter cohort of patients with skull base tumor. SRH images were then used to train a convolutional neural network model using 3 representation learning strategies: cross-entropy, self-supervised contrastive learning, and supervised contrastive learning. Our trained convolutional neural network models were tested on a held-out, multicenter SRH data set.
Results: SRH was able to image the diagnostic features of both benign and malignant skull base tumors. Of the 3 representation learning strategies, supervised contrastive learning most effectively learned the distinctive and diagnostic SRH image features for each of the skull base tumor types. In our multicenter testing set, cross-entropy achieved an overall diagnostic accuracy of 91.5%, self-supervised contrastive learning 83.9%, and supervised contrastive learning 96.6%. Our trained model was able to segment tumor-normal margins and detect regions of microscopic tumor infiltration in meningioma SRH images.
Conclusion: SRH with trained artificial intelligence models can provide rapid and accurate intraoperative analysis of skull base tumor specimens to inform surgical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514725 | PMC |
http://dx.doi.org/10.1227/neu.0000000000001929 | DOI Listing |
Biomater Biosyst
September 2025
ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
July 2025
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
Biology-guided voxel-level inverse prescription mapping for dose painting (DP) using diffusion-weighted magnetic resonance imaging was evaluated for technical feasibility in proton therapy for 10 skull-base chordoma patients. Patient-specific DP prescriptions were generated from tumour cellularity and implemented in a clinical treatment planning system. Compared with uniform plans, DP achieved lower conformity (although >97 %), improved target dose metrics, reduced doses to most organs at risk, and increased tumour control probability without exceeding clinical constraints.
View Article and Find Full Text PDFPediatr Dev Pathol
September 2025
The Hospital for Sick Children, Division of Pathology, Toronto, Canada.
Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. For stratification purposes, rhabdomyosarcoma is classified into fusion-positive RMS (alveolar rhabdomyosarcoma) and fusion-negative RMS (embryonal or spindle cell/sclerosing, FN-RMS) subtypes according to its fusion status. This study aims to highlight the pathologic and molecular characteristics of a cohort of FN-RMS using a targeted NGS RNA-Seq assay.
View Article and Find Full Text PDFJ Leukoc Biol
September 2025
School of Pharmacy and Medical Science and Central Facility for Genomics, Griffith University, Parklands Drive, QLD, Australia.
There is limited understanding of the impact of anti-IL5 treatment on nasal polyp tissue biology in chronic rhinosinusitis with nasal polyps (CRSwNP). This study examined nasal polyp tissue cellular proteome and transcriptome responses to anti-IL5 treatment in CRSwNP utilising spatial profiling. GeoMx™ Digital Spatial Profiling (DSP) of 80 proteins and 1,833 mRNA targets in the polyp stroma and the whole transcriptome (18,815 mRNA targets) in polyp epithelia was undertaken on sinonasal biopsies collected from 20 individuals with eosinophilic CRSwNP before and after 16 and 24 weeks of mepolizumab treatment.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
September 2025
Department of Otolaryngology-Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, USA.
Socioeconomic and neighborhood disadvantages have been increasingly investigated for their associations with outcomes in a variety of otolaryngologic conditions. The aim of this study is to explore the role of area deprivation index (ADI) on the hospital length of stay and 30-day readmission following endoscopic endonasal skull base surgery (EESBS). We performed a cross-sectional study of all patients who underwent EESBS between August 2020 and April 2024 at an academic institution.
View Article and Find Full Text PDF