[Effects of magnesium supply level on growth, nutrient element absorption and distribution, and quality of Panax quinquefolium].

Zhongguo Zhong Yao Za Zhi

Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Food and Biological Engineering, Chengdu University Chengdu 610106, China Jilin Provincial Key Laboratory of Cultivation and Propagation of Chinese Medicinal Materials Changchu

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to investigate the effects of different magnesium supply levels on the growth, nutrient absorption and distribution, and quality of Panax quinquefolium, and to determine the optimum content of exchangeable magnesium in soil. Three-year-old plants of P. quinquefolium were used in this study, and eight magnesium supply gradients(CK, Mg1-Mg7) were designed for indoor pot experiment(cultivation in soil). The plant growth indexes, nutrient element content in soil and plant, and root saponin content were determined at the end of the growth period. The correlation analysis of nutrient element content in aboveground and underground parts of P. quinquefolium showed significantly negative correlations of magnesium-calcium, magnesium-potassium, and magne-sium-manganese. With the increase in magnesium supply level, the biological absorption coefficient of magnesium increased, while that of total nitrogen, potassium, iron, and manganese decreased; the biological transfer coefficient of magnesium decreased, while that of nitrogen, phosphorus, calcium, iron, and manganese increased. The saponin content was analyzed by principal component analysis, which showed the comprehensive score in the order of Mg4(2.537), Mg2(1.001), Mg3(0.600), Mg1(0), Mg7(-0.765), CK(-0.825), Mg6(-0.922), and Mg5(-1.663). The partial least squares-path modeling(PLS-PM) showed that the correlation coefficients of exchangeable magnesium and pH with quality were-0.748 and-0.755, respectively, which were significant. Magnesium-calcium, magnesium-potassium, and magnesium-manganese showed antagonism in the nutritional physiology of P. quinquefolium. Excessive application of magnesium can lead to the imbalance of nutrient elements in P. quinquefolium. The content of exchangeable magnesium in soil suitable for the quality formation of P. quinquefolium was 193.34-293.34 mg·kg~(-1). In addition to exchangeable magnesium, pH was also important to the quality formation of P. quinquefolium. Therefore, exchangeable magnesium and pH could be regarded as monitoring factors for the quality formation of P. quinquefolium.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20211222.102DOI Listing

Publication Analysis

Top Keywords

exchangeable magnesium
20
magnesium supply
16
nutrient element
12
quality formation
12
formation quinquefolium
12
magnesium
11
supply level
8
growth nutrient
8
absorption distribution
8
distribution quality
8

Similar Publications

Magnesium nanoparticles enhance growth and reshape the rhizosphere microbial community in soybean (Glycine max L.).

Plant Physiol Biochem

September 2025

Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Magnesium (Mg) is an essential macronutrient in plants, vital for photosynthesis, enzyme activation, protein synthesis, and carbon metabolism. This study evaluated the effects of magnesium oxide nanoparticles (MgO NPs) on growth, physiological performance, and rhizosphere microbial composition in soybean (Glycine max L.).

View Article and Find Full Text PDF

Significant amounts of effluents containing pharmaceuticals residues are released each year in the environment. These residues are responsible for the disruption of the metabolism of organisms. In this study, vermiculite, a low-cost and high specific area clay material, is a best and effective way to remove the micro-pollutants by adsorption.

View Article and Find Full Text PDF

In this study, MgO-containing magnetic composite biochar (MBC) was prepared from activated corn stover for the efficient removal of Pb. Through the introduction of magnesium and iron ions, the surface and pore structures of the acid-treated corn stover biochar adsorbent were optimized, with its adsorption capacity being enhanced to 253.6 mg g.

View Article and Find Full Text PDF

Latest Research Progress in High-Purity Material Purification Technology.

ACS Omega

August 2025

State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

High-purity metals, defined as metals with impurity levels minimized to achieve purity, typically ≥99.999% (5N grade), constitute critical raw materials and serve as essential supporting components for modern high-technology industries. Common examples include high-purity indium, gallium, germanium, magnesium, lithium, aluminum, tin, tellurium, and titanium.

View Article and Find Full Text PDF

Full P to P Reduction with a Redox-Active Metal Crown Complex.

Angew Chem Int Ed Engl

September 2025

Inorganic and Organometallic Chemistry, Universität Erlangen Nürnberg, Egerlandstrasse1, Erlangen, 91058, Germany.

Traditional bulk syntheses of phosphorus compounds start with P to PCl oxidation but more sustainable methods cleave P─P bonds reductively. This generally results in larger polyphosphide Zintl anions: P -. We report a relatively selective full reduction of P at room temperature to give a unique hydrocarbon-soluble s-block metal complex of the P- anion.

View Article and Find Full Text PDF