98%
921
2 minutes
20
Background: KOREF is the Korean reference genome, which was constructed with various sequencing technologies including long reads, short reads, and optical mapping methods. It is also the first East Asian multiomic reference genome accompanied by extensive clinical information, time-series and multiomic data, and parental sequencing data. However, it was still not a chromosome-scale reference. Here, we updated the previous KOREF assembly to a new chromosome-level haploid assembly of KOREF, KOREF_S1v2.1. Oxford Nanopore Technologies (ONT) PromethION, Pacific Biosciences HiFi-CCS, and Hi-C technology were used to build the most accurate East Asian reference assembled so far.
Results: We produced 705 Gb ONT reads and 114 Gb Pacific Biosciences HiFi reads, and corrected ONT reads by Pacific Biosciences reads. The corrected ultra-long reads reached higher accuracy of 1.4% base errors than the previous KOREF_S1v1.0, which was mainly built with short reads. KOREF has parental genome information, and we successfully phased it using a trio-binning method, acquiring a near-complete haploid-assembly. The final assembly resulted in total length of 2.9 Gb with an N50 of 150 Mb, and the longest scaffold covered 97.3% of GRCh38's chromosome 2. In addition, the final assembly showed high base accuracy, with <0.01% base errors.
Conclusions: KOREF_S1v2.1 is the first chromosome-scale haploid assembly of the Korean reference genome with high contiguity and accuracy. Our study provides useful resources of the Korean reference genome and demonstrates a new strategy of hybrid assembly that combines ONT's PromethION and PacBio's HiFi-CCS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952264 | PMC |
http://dx.doi.org/10.1093/gigascience/giac022 | DOI Listing |
Arch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Arthropod-borne viruses (arboviruses) pose a major threat to global public health, impacting both human and animal health. Genomic characterization is important for arboviruses because it allows for an understanding of their evolution and improves timely outbreak and epidemic response. In this study, we used high-throughput sequencing and computational analyses to characterize the genomes and evolution of 46 previously unsequenced or partially sequenced arbovirus isolates collected across 23 countries between 1954 and 1984.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Unlabelled: The genus includes opportunistic pathogens inhabiting engineered aquatic ecosystems, where managing their presence and abundance is crucial for public health. In these environments, interact positively or negatively with multiple members of the microbial communities. Here, we identified bacteria and compounds with -antagonistic properties.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .
View Article and Find Full Text PDFFront Genet
August 2025
Qingdao Agricultural University, Qingdao, China.
Introduction: Identifying genetic markers associated with economically important traits in dairy goats helps enhance breeding efficiency, thereby increasing industry value. However, the potential genetic structure of key economic traits in dairy goats is still largely unknown.
Methods: This study used three genome-wide association study (GWAS) models (GLM, MLM, FarmCPU) to analyze dairy goat milk production traits (milk yield, fat percentage, protein percentage, lactose percentage, ash percentage, total dry matter, and somatic cell count).