98%
921
2 minutes
20
Skeletal muscle weakness is linked to many adverse health outcomes. Current research to identify new drugs has often been inconclusive due to lack of adequate cellular models. We previously developed a scalable monolayer system to differentiate human embryonic stem cells (hESCs) into mature skeletal muscle cells (SkMCs) within 26 days without cell sorting or genetic manipulation. Here, building on our previous work, we show that differentiation and fusion of myotubes can be further enhanced using the anabolic factors testosterone (T) and follistatin (F) in combination with a cocktail of myokines (C). Importantly, combined TFC treatment significantly enhanced both the hESC-SkMC fusion index and the expression levels of various skeletal muscle markers, including the motor protein myosin heavy chain (MyHC). Transcriptomic and proteomic analysis revealed oxidative phosphorylation as the most up-regulated pathway, and a significantly higher level of ATP and increased mitochondrial mass were also observed in TFC-treated hESC-SkMCs, suggesting enhanced energy metabolism is coupled with improved muscle differentiation. This cellular model will be a powerful tool for studying in vitro myogenesis and for drug discovery pertaining to further enhancing muscle development or treating muscle diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946006 | PMC |
http://dx.doi.org/10.3390/cells11060963 | DOI Listing |
Mol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFFront Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Body composition metrics such as bodyweight, body condition score (BCS) and muscle condition score (MCS) can be readily recorded as part of veterinary examinations in ageing cats. However, the description of how these parameters change with age, whilst accounting for sex and age-related morbidity, is limited. The aim of this prospective cohort study was to evaluate age, sex and health-related changes in bodyweight, BCS and MCS in client-owned pet cats.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
Metastatic renal osteosarcoma is a rare entity. We report a case of a 52-year-old male postright nephrectomy status presented to us with metastatic renal osteosarcoma. 18-fluorine- fluorodeoxyglucose (F-FDG) avid lesions were seen in the right renal bed with extension to adjacent hepatic parenchyma.
View Article and Find Full Text PDFFront Physiol
August 2025
Department of Sports Medicine, Wuhan Sports University, Wuhan, China.
With the intensification of population aging, sarcopenia in older adults has become a significant public health issue affecting quality of life. Sarcopenia is a progressive and systemic skeletal muscle disorder characterized by reduced muscle mass, decreased muscle strength, and diminished physical function. Although conventional exercise interventions have shown some efficacy in managing sarcopenia, their effects are limited and often insufficient to effectively halt disease progression.
View Article and Find Full Text PDF